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Objective: To determine the localization, expression, and function of Toll-like receptors (TLRs) in fallopian tube epithelial cells. 
Methods: The localization of TLRs in fallopian tube epithelial cells was investigated by immunostaining. Surprisingly, the intensity of staining 
was not equal in the secretory and ciliated cells. After primary cell culture of fallopian tube epithelial cells, ring cloning was used to isolate colo-
nies of ciliated epithelial cells, distinct from non-ciliated epithelial cells. The expression of TLRs 1–10 was examined by quantitative real-time 
polymerase chain reaction, and protein localization was confirmed by immunostaining. The function of the TLRs was determined by interleukin 
(IL)-6 and IL-8 production in response to TLR2, TLR3, TLR5, TLR7, and TLR9 ligands.
Results: Fallopian tube epithelial cells expressed TLRs 1–10 in a cell-type-specific manner. Exposing fallopian tube epithelial cells to TLR2, TLR3, 
TLR5, TLR7, and TLR9 agonists induced the secretion of proinflammatory cytokines such as IL-6 and IL-8. 
Conclusion: Our findings suggest that TLR expression in the fallopian tubes is cell-type-specific. According to our results, ciliated cells may play 
more effective role than non-ciliated cells in the innate immune defense of the fallopian tubes, and in interactions with gametes and embryos.  
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Introduction

The fallopian tube, as a dynamic reproductive organ, plays an im-
portant role in gamete transport, the final maturation of female and 
male gametes, fertilization, early development of the embryo, and 
transport of the embryo to the uterus [1]. From the histological point 

of view, the fallopian tube consists of three layers: the mucosa, mus-
cular, and serosa layers. The tubal mucosa is composed of cuboidal or 
simple columnar epithelium made up of ciliated and secretory cells. 
Ciliated cells are seen predominantly on the apex of the mucosal 
folds [2]. They undergo cyclical changes in morphology and ciliary 
activity under the influence of estrogen and progesterone [1,3]. 

Sexually transmitted infections (STIs) are a major clinical concern in 
reproductive medicine because of their reproductive sequelae [4-6]. 
For example, genital Chlamydia trachomatis infection, particularly 
within the fallopian tubes, can have serious consequences, such as 
pelvic inflammatory disease, tubal factor infertility, and pregnancy 
complications [5,7,8]. The effects of the immune system related to 
epithelial cells of the female reproductive tract represent the first re-
action to sexually transmitted bacterial and viral pathogens [9]. 

During the last decade, Toll-like receptors (TLRs) have been identi-
fied as principal sentinels of the innate immune system that possess 

Received: Sep 2, 2017 ∙ Revised: Sep 20, 2017  ∙ Accepted: Oct 14, 2017 
Corresponding author: Reza Aflatoonian
Department of Endocrinology and Female Infertility, Reproductive Biomedicine 
Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Number 
12, East Hafez Avenue, Bani Hashem St, Resalat Highway, Tehran 16635-148, Iran
Tel: +98-21-23562726  Fax: +98-21-23562727  E-mail: R.Aflatoonian@gmail.com

*The first two authors contributed equally to this study.
*This work was supported by the Royan Institute, Tehran, Iran (grant No. 90000247).

This is an Open Access article distributed under the terms of the Creative Commons Attribution 
Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the 
original work is properly cited.



� https://doi.org/10.5653/cerm.2018.45.1.1

� Clin Exp Reprod Med 2018;45(1):1-9

2

the ability to recognize both pathogen-associated molecular patterns 
(PAMPs) and endogenous damage-associated molecular patterns. 
The TLR family also links innate and adaptive immunity through the 
production of proinflammatory cytokines and further specialist im-
mune cell recruitment [10-13]. Recently, an analysis of 10 human and 
12 mice TLRs found that they can be grouped into two categories 
based on their localization or their activation by microbial membrane 
lipids, microbial nucleic acids, or bacterial proteins [12,14]. 

TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the plasma 
membrane, whereas TLR3, TLR7, TLR8, and TLR9 are expressed in cy-
toplasmic organelles, mainly the endosomes, lysosomes, endolyso-
somes, and endoplasmic reticulum [15,16]. The TLRs located on the 
plasma membrane respond to bacterial PAMPs. In contrast, TLR3 de-
tects viral double-stranded RNA, TLR7 and TLR8 react to self and viral 
single-strand RNA, and TLR9 binds unmethylated bacterial DNA. It 
remains unknown which ligands activate TLR10 [9].

TLRs trigger signal transduction through adaptor molecules that 
are recruited to the intracellular domain of the TLR upon ligand bind-
ing. Among them, MyD88 is widely utilized by all TLRs, with the ex-
ception of TLR3. TRIF is an adaptor molecule for TLR3 and TLR4, while 
the MyD88-adapter-like adaptor mediates signaling from TLR2 and 
TLR4. In contrast, the TRIF-related adaptor molecule is exclusively re-
cruited by TLR4. Finally, these signaling pathways activate the tran-
scription factor NF-κB (nuclear factor kappa-light-chain-enhancer of 
activated B cells) and activator protein-1, which is common to all 
TLRs, leading to the production of inflammatory mediators such as 
interleukin (IL)-6 and IL-8. TLR3, TLR4, TLR7, TLR8, and TLR9 also acti-
vate interferon regulatory factor (IRF) 3 and/or IRF7, leading to the 
production of interferon (IFN)-β and IFN-α [17]. 

The presence of TLRs in the upper female reproductive tract has 
been established in several studies [9,18]. TLR expression is menstru-
ation-dependent, and TLRs are involved in the regulation of ovula-
tion, sperm capacitation, fertilization, gestation, and parturition, as 
well as in pathological and inflammatory conditions such as endo-
metritis and STIs [9,19-22]. 

To our knowledge, the present study is the first to investigate 
whether there are immunological differences between the two cell 
types of the fallopian tube. In light of the pivotal role of TLRs in innate 
immunity and the reproductive significance of the fallopian tubes, 
we explored the expression and function of TLRs in ciliated and non-
ciliated human fallopian tube epithelial cells.

Methods

1. Patients and samples
The current study was approved by the Ethics Committee of ROYAN 

Institute and written informed consent was obtained prior to the col-

lection of tissue samples. Fallopian tube tissue samples were collect-
ed from nine patients undergoing tubal ligation or total abdominal 
hysterectomy for benign gynecological conditions. 

Fallopian tube tissues were transported from the operating theater 
in Hanks’ balanced salt solution (Gibco Life Technologies, Paisley, UK). 
A small section of the fallopian tubes (0.5 cm) was cut and divided 
into two pieces. The first portion was fixed in formalin for immuno-
histochemistry. The other part of each sample was used for the pri-
mary cell culture.

2. Antibodies and peptides
Antibodies and peptides were obtained from Santa Cruz Biotech-

nology (Santa Cruz, CA, USA). These were goat polyclonal antibodies 
specific for the N-terminal domains of TLR1, TLR2, TLR3, TLR5, TLR6, 
TLR7, and TLR9 (sc8687, sc8689, sc8691, sc8695, sc5657, sc13207, 
and sc13212, respectively), goat polyclonal antibody specific for the 
C-terminal domains of TLR4 (sc8694), goat polyclonal antibody spe-
cific for the V-terminal domains of TLR10 (sc23577), and rabbit poly-
clonal antibody specific for the D-terminal domains of TLR8 (sc- 
13212-R). Blocking peptides specific for the respective antibodies 
were used to detect non-specific staining.

3. Immunostaining
The tissue samples were fixed in 10% formalin, embedded in paraf-

fin, cut into 4-μm sections, and stained with hematoxylin and eosin 
following a routine protocol. The sections were deparaffinized with 
xylosine, followed by rehydration in graded ethanol. Endogenous 
peroxidase activity was blocked with 3% by volume hydrogen perox-
idase in methanol. Antigen retrieval was performed by microwave ir-
radiation in 10 mmol/L sodium citrate (pH 6.0), followed by washing 
in phosphate-buffered saline (PBS) and staining using a Vectastain 
Elite ABC peroxidase kit (Vector Laboratories, Peterborough, UK). In 
addition, to avoid non-specific binding, an avidin/biotin blocking kit 
was used. The block was then removed and the slides were incubat-
ed overnight with a primary antibody. Binding was visualized by in-
cubation with the peroxidase substrate 3-amino-9-ethylcarbazole 
and counterstained with 10% hematoxylin. Negative controls were 
obtained by blocking the primary antibody with the corresponding 
specific peptide. Immunostained sections were examined using an 
Olympus BH2 microscope (Tokyo, Japan) [23]. 

4. Primary cell culture of epithelial cells
For primary cell culture, the fallopian tube tissues were cut longitu-

dinally and layered, then incubated with 0.25% collagenase (Sigma-
Aldrich, Poole, UK). After 1 hour, the epithelial cells were scraped off 
each tube gently and washed with DMEM/F12 culture medium (Invi-
trogen, Paisley, UK) supplemented with 1% penicillin and streptomy-
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cin (Sigma-Aldrich), 10% fetal calf serum (FCS, Invitrogen) and 1% L-
glutamine (Invitrogen). After centrifugation, the pellet of cells was re-
suspended in normal medium and cultured in a 6-well plate culture 
dish until confluency. Confluent cells were subcultured on a chamber 
slide for cytokeratin immunocytochemical staining and in T75 cul-
ture flasks until confluency [23]. 

5. Cytokeratin immunostaining 
For immunostaining, epithelial cells were cultured in 4-well cham-

ber slides at 37°C in DMEM/F12 culture medium (Invitrogen) supple-
mented with 1% penicillin and streptomycin (Sigma-Aldrich), 10% 
FCS (Invitrogen) and L-glutamine (Invitrogen) in a 5% CO2 atmo-
sphere. At confluency, the slides were washed with PBS, fixed with 
5% formalin, and stored at 4°C. Staining for cytokeratin was per-
formed using a Vectastain Elite ABC peroxidase kit (Vector Laborato-
ries). To avoid non-specific binding, an avidin/biotin blocking kit 
(Vector Laboratories) was used. After removing the block, the slides 
were incubated for 2 hours at room temperature in primary antibody 
(monoclonal anti-pan cytokeratin antibody clone C-11, Sigma-Al-
drich) at an appropriate dilution using antibody diluent medium 
(Dakocytomation Ltd., Cambridgeshire, UK) and 250 mL of biotin per 
milliliter of diluted antibody. Binding was visualized by incubation 
with DAB substrate (Vector Laboratories), and the slides were then 
counterstained with hematoxylin and mounted with DPX (VWR In-
ternational, Lutterworth, UK).

6. Isolation of ciliated from non-ciliated epithelial cells
Ring cloning was used to isolate colonies of ciliated epithelial cells 

from non-ciliated epithelial cells. Briefly, a cloning cylinder with one 
edge covered with sterile silicon wax was placed on a colony of ciliat-
ed epithelial cells, and 10 µL of trypsin was used to remove the ciliat-
ed epithelial cells. The cells were then transferred to a 12-well plate 
and grown to confluency (Figure 1).

Ciliated and non-ciliated cells of the fallopian tubes were separately 
subcultured at 37°C in DMEM/F12 culture medium (Invitrogen) sup-
plemented with 1% penicillin and streptomycin (Sigma-Aldrich), 
10% FCS (Invitrogen), and 1% L-glutamine (Invitrogen) in a 5% CO2 
atmosphere until confluency (5 days).

7. RNA isolation and cDNA synthesis
For genomic studies, ciliated and non-ciliated epithelial cells were 

washed with Dulbecco’s PBS without Ca2+ or Mg2+, harvested using 
trypsin-EDTA (Invitrogen), and pelleted by centrifugation at 300 × g 
for 5 minutes, at which point the supernatant was discarded. One 
milliliter of TRI reagent (Sigma-Aldrich) was added onto the pellet 
(5 × 106 cells). Thereafter, the total RNA from the pelleted cells was 
extracted following the standard protocol supplied by the manufac-
turer.

The total RNA obtained from ciliated and non-ciliated epithelial 
cells was treated three times with DNase I (Fermentas, Sankt Leon-
Rot, Germany) to remove genomic DNA contamination from the 
samples. First-strand cDNA synthesis was performed using oligo dT 
primers (Fermentas kit) and reverse transcription by Super-Script II 
(200 Ul, Invitrogen). Negative controls were prepared without inclu-
sion of the enzyme (non-reverse transcribed [non-RT] controls, RT 
controls). 

8. Quantitative real-time polymerase chain reaction
Quantitative real-time polymerase chain reaction (QPCR) was per-

formed with the cDNA prepared from ciliated and non-ciliated epi-
thelial cells. QPCR reactions were carried out in triplicate using an ABI 
Prism 7300 Sequence Detector (Applied Biosystems, Foster, CA, USA) 
with a total volume of 20 μL, containing 250 ng of cDNA, 5 pmol of 
gene-specific primers, and SYBR Green reagent (Applied Biosystems) 
with ROX dye as a passive control for signal intensity. The thermal cy-
cle profile was 10 seconds at 95°C, followed by 50 cycles of 5 seconds 
at 95°C and 35 seconds at 60°C. Melting curve analysis was used to 
determine the specificity of the PCR fragments. All melting curves 
yielded one peak per PCR product. The expression of the reference 
housekeeping gene GAPDH was also quantified for the purpose of 
normalization, and was tested by real-time polymerase chain reac-
tion (RT-PCR). All experiments included non-RT controls and negative 
controls (no cDNA). The forward and reverse primer sequences that Figure 1. Isolation of ciliated from non-ciliated epithelial cells.

Ciliated fallopian 
tube cells

Non-ciliated 
fallopian tube cells

Cloning cylinder

Trypsin
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were used are presented in Table 1. The QPCR data were analyzed us-
ing the comparative cycle threshold method [24]. 

9. PAMP stimulation of fallopian tube epithelial cells
To study the functionality of TLRs in fallopian tube epithelial ciliated 

and non-ciliated cells, the cells were exposed to the TLR2-, TLR3-, 
TLR5-, TLR7-, and TLR9-specific ligands peptidoglycan, poly I:C, flagel-
lin, loxoribine, and the CPG oligonucleotide, respectively. Phorbol 
12-myristate 13-acetate (PMA; Sigma-Aldrich, No. P8139) with iono-
mycin (Sigma-Aldrich, No. 13909) was used as a positive control in 
this experiment (10 ng/mL of PMA and 500 ng/mL of ionomycin). 
Cells were cultured in 12-well culture plates until they were confluent. 
The supernatant was then replaced with 1 mL of fresh culture medi-
um containing TLR2, TLR3, TLR5, TLR7, and TLR9 ligands, peptidogly-
can from Staphylococcus aureus (10 µg/mL; catalog #tlr1-pgnsa), poly 
I:C (25 µg/mL; catalog #tlr1-pic), purified flagellin from Salmonella ty-

phimurium (100 ng/mL), loxoribine (100 µM; catalog #tlr1-lox), and 
the CPG oligonucleotide ODN1826 (10 µM; catalog #tlr1-modn) (all In-
vitrogen). Cells were incubated for 24 hours and the supernatants 
were collected, centrifuged at 10,000 × g for 5 minutes at 4°C, trans-
ferred to fresh tubes, and stored at −70°C for an enzyme-linked im-
munosorbent assay (ELISA). To screen for the effects of PAMP stimula-
tion, IL-6 and IL-8 production was analyzed by ELISA [25].

10. Enzyme-linked immunosorbent assay
The concentrations of IL-6 and IL-8 were determined in culture su-

pernatants with commercially available IL-6 and IL-8 sandwich ELISA 
Duoset kits (R&D Systems, Minneapolis, MN, USA). ELISA was per-
formed according to the manufacturer’s instructions with 100 µL of 
cell-free supernatant. The ELISA assay had a sensitivity of 18.75 pg/
mL and 8 pg/mL for IL-6 and IL-8, respectively. The sample concentra-
tions were determined by interpreting the standard curve.

11. Statistical analysis
The results were expressed as mean ± standard error of the mean. 

The statistical analysis was conducted using the t-test. The p-values 
< 0.05 were considered to indicate statistical significance. 

Results

1. TLR immunostaining 
The ciliated cells had positive immunostaining for all the TLRs. 

However, in non-ciliated cells, weak staining was observed for TLR1–
TLR8, and no staining for TLR9 or TLR10. In addition, weak staining of 
the stroma was observed for TLR7 and TLR9, but no staining was ob-
served in the stroma for the other TLRs (Figure 2). 

2. Cytokeratin immunostaining
Positive cytokeratin immunostaining was observed in the epithelial 

layer of the fallopian tubes and in the primary cell culture (Figure 3).

3. Quantitative real-time polymerase chain reaction 
The expression of TLRs 1–10 was significantly higher in the ciliated 

cells than in the non-ciliated cells. All amplified products were at the 
predicted size for their respective genes (Figure 4). Figure 5 shows 
the results of QPCR for the expression of the genes for TLRs 1–10 in 
the ciliated and non-ciliated cells.

4. TLR function in ciliated and non-ciliated cells
The production of IL-6 and IL-8 was significantly higher in the ciliated 

cells than in the non-ciliated cells in response to peptidoglycan, poly 
I:C, CPG oligonucleotide, PMA, flagellin, and loxoribine (Figures 6, 7).

Discussion

Infection of the fallopian tubes due to chlamydia, gonorrhea, or 
other STIs can cause serious fertility problems. Therefore, healthy fal-
lopian tubes are a prerequisite for a successful spontaneous preg-
nancy [5]. Although the upper part of the female reproductive tract 
was previously considered to be sterile, it has been found that patho-

Table 1. The primer sequences (5΄-3΄) used in quantitative real-time polymerase chain reaction				  

Gene symbol Forward primer Reversed primer Annealing temperature ( C̊) Product size (bp)

TLR1 GGGTCAGCTGGACTTCAGA AAAATCCAAATGCAGGAACG 61 250
TLR2 TCGGAGTTCTCCCAGTTCTCT TCCAGTGCTTCAACCCACAA 59 175
TLR3   GTATTGCCTGGTTTGTTAATTGG AAGAGTTCAAAGGGGGCACT 60 150
TLR4 TGATGTCTGCCTCGCGCCTG AACCACCTCCACGCAGGGCT 60 98
TLR5 CACCAAACCAGGGATGCTAT CCTGTGTATTGATGGGCAAA 60 111
TLR6 GCCACCATGCTGGTGTTGGCT CGCCGAGTCTGGGTCCACTG 60 101
TLR7 CCTTGAGGCCAACAACATCT GTAGGGACGGCTGTGACATT 65 285
TLR8 CTTCGATACCTAAACCTCTCTAGCAC AAGATCCAGCACCTTCAGATGA 60 90
TLR9 TTCCCTGTAGCTGCTGTCC ACAGCCAGTTGCAGTTCACC 58 207
TLR10 TGCCCACCACAATCTCTTCCATGA AGCAGCTCGAAGGTTTGCCCA 60 184
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gens in the vagina can ascend from the cervix and uterus to the fallo-
pian tubes within minutes of deposition [26]. It has also been shown 
that semen can transmit viruses to the upper part of the female re-
productive tract [27,28]. Thus, the fallopian tubes, like other parts of 
the female reproductive tract, must be protected from pathogenic 
invasion by the immune system.

TLRs constitute the body’s primary defense system because they 
detect and rapidly respond to micro-organisms or endogenous dan-

Figure 2. Immunohistochemical staining of Toll-like receptors (TLRs) 
1–10 in fallopian tube epithelial cells. Positive staining is brown and 
negative staining is blue (scale bar = 40 µm). Arrows indicate positive 
staining.

TLR 5

TLR 4TLR 3

TLR 2TLR 1

TLR 10TLR 9

TLR 8TLR 7

TLR 6

Figure 3. Cytokeratin immunostaining for fallopian tube cells and tissue. 
(A) Fallopian tube tissue stained with H&E. Positive immunostaining was 
observed in fallopian tube tissue in epithelial layer (C) and primary cell 
culture (B, D). Scale bar = 40 µm in (A, C), 20 µm in (D), 60 µm in (B).
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Figure 4. The expression of the genes for Toll-like receptors (TLRs) 
1–10 in human fallopian tube tissue. Each pair of primers produced a 
specific product, with the specific predicted size in the test samples 
(T). C, control sample.

Figure 5. Quantitative polymerase chain reaction to assess the ex-
pression of the genes for Toll-like receptors (TLRs) 1–10 in ciliated and 
non-ciliated fallopian tube epithelial cells. Data are presented as 
mean ± standard error of the normalized expression values for the 
genes for TLRs 1–10. Real-time polymerase chain reaction was per-
formed three times for each comparison. a)Significant differences be-
tween groups (p < 0.01).
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ger signals and initiate inflammatory cascades. Several studies have 
characterized the presence and the function of TLRs in the upper fe-
male reproductive tract [29-33]. In the first part of the present study, 
immunostaining showed that the TLR 1–10 proteins are expressed in 
a cell-type-specific fashion in the fallopian tubes. We detected posi-
tive immunostaining for all the TLRs in the fallopian tube ciliated epi-
thelial cells. However, in the non-ciliated cells, weak staining for TLRs 
1–8 was observed, as well as no staining for TLRs 9 or 10.

In accordance with our results, TLRs have been shown to be ex-
pressed throughout the female reproductive tract, including the fal-
lopian tubes, uterine endometrium, cervix, and ectocervix, as well as 
MYD88 and accessory molecule CD14 [34]. Another study showed 
that TLRs 7–9 were present in the female reproductive tract tissues, 
but reported that TLR10 expression was limited to the fallopian tube 
[35]. In contrast to our findings, a recent study failed to detect TLR10 
expression in epithelial cells obtained from the fallopian tubes of 
premenopausal women undergoing hysterectomy [36]. 

In the next step of the study, based on the results of the first part, 2 
cell types present in the fallopian tube were separated by the ring 
cloning method for further analysis. The expression of TLRs 1–10 was 
significantly higher in the ciliated cells than in the non-ciliated cells. 
Apart from the role of TLRs in immunity, they have been assumed to 
play an active role in many physiological and inflammatory events 
related to normal reproductive processes. TLRs participate in the reg-
ulation of ovulation, tissue remodeling during the menstrual cycle, 
sperm protection, sperm capacitation, fertilization, and pregnancy 
[19,37-39]. Shimada et al. [40] illustrated that the activation of TLR2 
and TLR4 in cumulus cells in response to sperm-secreted hyaluronic 
acid fragments resulted in the production of cytokines and chemo-
kines through the NF-κB pathway. The cytokines and chemokines 
promoted sperm capacitation through G protein-coupled receptor 

activation and calcium release. Additionally, our previous study 
showed that sperm could stimulate TLR3 and TLR5 in a physiological 
manner in the fallopian tube, perhaps to prepare a safe environment 
for the gamete and embryo [41].

Based on our findings, we speculate that ciliated cells probably par-
ticipate more actively than non-ciliated cells in preparing a desirable 
and safe environment for gamete survival and in supporting the em-
bryo through higher TLR expression and greater production of cyto-
kines and chemokines. Therefore, in the next step of the study, we in-
vestigated whether the TLRs on epithelial cells were functional and 
whether ciliated cells produced a greater concentration of cytokines 
than secretory cells.

We found that ciliated epithelial cells produced more IL-6 and IL-8 
in response to their ligands than non-ciliated epithelial cells. Our re-
sults agree with those of another report regarding the functional ex-
pression of TLRs 7–10 in female reproductive tract tissue cells [35]. In 
contrast to our findings, Ghosh et al. [36] demonstrated that fallopian 
tube epithelial cells were unresponsive to the TLR2 agonist zymosan. 
Some explanations for this difference may lie in the way the epitheli-
al cells were prepared and the use of different agonists.

The TLR family recruits and activates several pathways, including 
the NF-κB, type I IFN, c-Jun N-terminal kinases (JNK), and p38 MAP 
kinase pathways, depending on the nature of the adaptor that is 
used [15,42,43]. Stimulation of these signaling pathways leads to the 
production of proinflammatory cytokines and prostaglandins [15]. 
These factors are required for increasing the permeability of blood 
vessels and muscular contractions. Prostaglandins seem to play a 
role in the transport of gametes and embryos in the fallopian tubes. 
TLR-induced IL-6 and IL-8 are two key mediators in the inflammatory 
process that are synthesized by innate effector cells such as epithelial 
cells, uterine natural killer cells, monocytes, and macrophages. How-

Figure 6. Interleukin (IL)-6 production by fallopian tube epithelial cells 
after 24 hours of treatment with 10 μg/mL of PG from Staphylococcus 
aureus, 1 μg/mL of poly I:C, 10 μM CpG oligonucleotide, 10 ng/mL of 
PMA and 500 ng/mL of Io, 25 μg/mL of flagellin from Escherichia coli, 1 
μM loxoribine. NS, not significant; PG, peptidoglycan; PMA, phorbol 
12-myristate 13-acetate; lo, Ionomycin. Significant differences be-
tween groups: a)p < 0.05; b)p < 0.01; c)p < 0.001.  
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Figure 7. Interleukin (IL)-8 production by fallopian tube epithelial cells 
after 24 hours of treatment with 10 μg/mL of PG from Staphylococcus 
aureus, 1 μg/mL of poly I:C, 10 μM CpG oligonucleotide, 10 ng/mL of 
PMA and 500 ng/mL of Io, 25 μg/mL of flagellin from Escherichia coli, 1 
μM loxoribine. NS, not significant; PG, peptidoglycan; PMA, phorbol 
12-myristate 13-acetate; lo, Ionomycin. Significant differences between 
groups: a)p < 0.05; b)p < 0.01; c)p < 0.001.  
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ever, cytokine/chemokine functions are not restricted to the immune 
response. Compelling evidence has been reported that they play im-
portant roles in cellular differentiation, embryonic development, and 
the feto-maternal interface [44,45]. These observations highlight the 
potential role of TLRs in the regulation of reproductive processes via 
downstream signaling, in addition to their role in protecting against 
invading pathogens. 

Fallopian tube ciliated cells are important in tubal transport, as they 
allow sperm to be transported in the opposite direction to the ova 
and embryo, and they also support fertilization and early embryo-
genesis; likewise, motile human sperm have been shown to bind by 
their heads to the ciliated apical areas of the tubal epithelium in vitro 

[1]. Ciliated cells and ciliary beating can be modified by hormonal 
levels and impaired by infections, smoking, and gynecological disor-
ders such as endometriosis, meaning that environmental changes 
also exert effects on the function of these kinds of cells [46]. Because 
of the vital role of ciliated cells in physiological processes and the fact 
that they can be influenced by environmental factors, a monitoring 
system such as the TLR family would seem to be crucial for them. This 
may explain the greater expression and responsiveness of TLRs in cili-
ated cells than in non-ciliated cells. Ciliated cells are also the first line 
of defense against pathogens [1]. It has been shown that healthy 
oviducts display a rapid host response to lipopolysaccharide by ele-
vating the tubal flow and increasing the frequency of cilia move-
ment, suggesting that cilia play an important role in detecting infec-
tions [47]. Therefore, it can be suggested that ciliated cells play a 
more critical role in the immune defense and reproductive processes 
related to the fallopian tubes than initially thought. However, more 
detailed studies are needed to evaluate the role of ciliated cells in the 
immune response and in various reproductive processes. 

 In conclusion, the current study demonstrated the different local-
ization and function of TLRs within ciliated and secretory cells of the 
human fallopian tube. Our results indicate that the ciliated cells play 
a greater role than expected in the innate immune defense of the fal-
lopian tubes. In addition, ciliated cells may play a pivotal role in pre-
paring gametes and contributing to an embryo-supporting environ-
ment via the production of more proinflammatory cytokines. How-
ever, further studies are needed to clarify the higher expression of 
TLRs and their functions in ciliated cells.
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