References
- Li RW, Wu S, Li W, Huang Y, Gasbarre LC. Metagenome plasticity of the bovine abomasal microbiota in immune animals in response to Ostertagia ostertagi infection. PloS One 2011;6:e24417. https://doi.org/10.1371/journal.pone.0024417
- Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011;331:463-7. https://doi.org/10.1126/science.1200387
- Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005;96:673-86. https://doi.org/10.1016/j.biortech.2004.06.025
- Lim S, Seo J, Choi H, et al. Metagenome analysis of protein domain collocation within cellulase genes of goat rumen microbes. Asian-Australas J Anim Sci 2013;26:1144-51. https://doi.org/10.5713/ajas.2013.13219
- Dai X, Zhu Y, Luo Y, et al. Metagenomic insights into the fibrolytic microbiome in yak rumen. PloS One 2012;7:e40430. https://doi.org/10.1371/journal.pone.0040430
-
Del Pozo MV, Fernandez-Arrojo L, Gil-Martinez J, et al. Microbial
${\beta}$ -glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 2012; 5:73. https://doi.org/10.1186/1754-6834-5-73 - Pope PB, Mackenzie AK, Gregor I, et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PloS One 2012;7:e38571. https://doi.org/10.1371/journal.pone.0038571
- Brulc JM, Antonopoulos DA, Miller MEB, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 2009;106:1948-53. https://doi.org/10.1073/pnas.0806191105
- Wongwilaiwalin S, Laothanachareon T, Mhuantong W, et al. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biotechnol 2013;97:8941-54. https://doi.org/10.1007/s00253-013-4699-y
- Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 2013;79: 1545-54. https://doi.org/10.1128/AEM.03305-12
- Nelson KE, Zinder SH, Hance I, et al. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol 2003;5:1212-20. https://doi.org/10.1046/j.1462-2920.2003.00526.x
- Sundset MA, Praesteng KE, Cann IKO, Mathiesen SD, Mackie RI. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 2007;54:424-38. https://doi.org/10.1007/s00248-007-9254-x
- An D, Dong X, Dong Z. Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 2005;11:207-15. https://doi.org/10.1016/j.anaerobe.2005.02.001
- Kittelmann S, Janssen PH. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecol 2011;75:468-81. https://doi.org/10.1111/j.1574-6941.2010.01022.x
- Han X, Yang Y, Yan H, et al. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS ONE 2015;10:e0117811. https://doi.org/10.1371/journal.pone.0117811
- Tajima K, Aminov RI, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 2001;67:2766-74. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
- Gullert S, Fischer MA, Turaev D, et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 2016;9:121. https://doi.org/10.1186/s13068-016-0534-x
- Do TH, Le NG, Dao TK, et al. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats rumen. J Gen Appl Microbiol Year Month Date [Epub]. https://doi.org/10.2323/jgam.2017.08.004
- Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res 2007;17:377-86. https://doi.org/10.1101/gr.5969107
- Henderson G, Cox F, Kittelmann S, et al. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 2013;8:e74787. https://doi.org/10.1371/journal.pone.0074787
- Roggenbuck M, Sauer C, Poulsen M, Bertelsen MF, Sorensen SJ. The giraffe (Giraffa camelopardalis) rumen microbiome. FEMS Microbiol Ecol 2014;90:237-46. https://doi.org/10.1111/1574-6941.12402
- Bekele AZ, Koike S, Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 2010;305:49-57. https://doi.org/10.1111/j.1574-6968.2010.01911.x
- Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2007;75:165-74. https://doi.org/10.1007/s00253-006-0802-y
- Martinez-Anaya C. Understanding the structure and function of bacterial expansins: a prerequisite towards practical applications for the bioenergy and agricultural industries. Microb Biotechnol 2016;9:727-36. https://doi.org/10.1111/1751-7915.12377
- Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012;3:289-306. https://doi.org/10.4161/gmic.19897
- Naas AE, Mackenzie AK, Mravec J, et al. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? mBio 2014;5:e01401-14.
- Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLOS ONE 2013;8:e78507. https://doi.org/10.1371/journal.pone.0078507
- Patel J, Jhala M, Soni P, et al. Molecular characterization and diversity of rumen bacterial flora in Indian goat by 16S rDNA sequencing. Online Vet J 2011;6:article 77.
Cited by
- High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle pp.20458827, 2019, https://doi.org/10.1002/mbo3.673
- Temperature and humidity index (THI)-induced rumen bacterial community changes in goats pp.1432-0614, 2019, https://doi.org/10.1007/s00253-019-09673-7
- Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structurein vitro vol.9, pp.71, 2018, https://doi.org/10.1039/c9ra08167d
- Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass vol.104, pp.2, 2020, https://doi.org/10.1007/s00253-019-10239-w
- Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function vol.34, pp.5, 2021, https://doi.org/10.5713/ajas.20.0115
- A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products vol.18, pp.11, 2021, https://doi.org/10.3390/ijerph18116001
- Characterization of microbial communities from rumen and large intestine of lactating creole goats grazing in arid plant communities vol.167, pp.10, 2018, https://doi.org/10.1099/mic.0.001092
- Understanding the Role of Prevotella Genus in the Digestion of Lignocellulose and Other Substrates in Vietnamese Native Goats’ Rumen by Metagenomic Deep Sequencing vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113257
- Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows vol.34, pp.11, 2018, https://doi.org/10.5713/ab.20.0527
- Taxonomic and functional characterization of the rumen microbiome of Japanese Black cattle revealed by 16S rRNA gene amplicon and metagenome shotgun sequencing vol.97, pp.12, 2021, https://doi.org/10.1093/femsec/fiab152