DOI QR코드

DOI QR Code

NM-MMA 적응 등화 알고리즘에서 Scaling Factor에 의한 성능 변화

A Performance Variation by Scaling Factor in NM-MMA Adaptive Equalization Algorithm

  • 임승각 (공주대학교 정보통신공학부 정보통신공학전공)
  • Lim, Seung-Gag (Dept. of Information and Communication, Kongju National University)
  • 투고 : 2018.01.16
  • 심사 : 2018.04.06
  • 발행 : 2018.04.30

초록

본 논문에서는 NM-MMA (Novel Mixed-Multi Modulus Algorithm) 알고리즘에서 mixed 비용 함수를 얻기 위한 scaling factor값에 의한 적응 등화 성능을 비교하였다. NM-MMA의 mixed 비용 함수는 MMA와 SE-MMA 비용 함수에서 gradient vector를 적절한 scaling factor 가중치 합으로 구성되며, 이를 이용하여 탭 계수 갱신을 하므로서 기존 방식들의 수렴 속도와 MSE양을 개선할 수 있다. 논문에서는 scaling factor를 변화시킬 때 동일한 채널과 스텝 크기 및 신호대 잡음비의 환경에서 컴퓨터 시뮬레이션을 수행하여 등화기 출력 성상도, 잔류 isi, MD, MSE 및 SER 성능을 비교하였다. 컴퓨터 시뮬레이션의 결과 MMA 비용 함수의 가중치가 SE-MMA 비용 함수의 가중치보다 큰 경우에는 성능 지수의 잔여량에서 우월하며, 그 반대의 경우 수렴 속도가 개선됨을 확인하였다.

This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.

키워드

참고문헌

  1. D.N.Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems", IEEE Trans. Com., Vol.28, pp.1867-1875, Nov. 1980. DOI : 10.1109/TCOM.1980.1094608
  2. I.Fijalkow, A.Touzni, J.R.Treichler, "Fractionally spaced Equalization using CMA : Robustness to channel noise and lack of disparity", IEEE Trans. S. P., Vol.45, pp.56-66, Jan. 1997. DOI : 10.1109/78.552205
  3. J.Yang, J.J.Werner and G.A.Dumont, "The multimodulus blind equalization algorithm", 13th Int. conf. of DSP, Vol. 1, pp.127-140, 2-4 July, 1997. DOI : 10.1109/ICDSP.1997.627988
  4. Wen si-yuan, Liu Feng, "A Computationally Efficient Multi-modulus Blind Equalization Algorithm", 2nd IEEE Int. conf. of Infor. Eng. and Management, pp.685-687, 2010. DOI : 10.1109/ ICIME.2010.5478261
  5. V.Weerackody, S.A.Kassam, K.R.Laker, "A simple hard-limited adaptive algorithm for blind equalization", IEEE Trans. on Circuits and System, Vol.39, No.7, pp.482-487, July 1992. DOI : 10.1109/82.160173
  6. Yecai Guo, Juwei Zhao, "A Novel Mixed Constant Modulus Blind Equalization Algorithm", 7th Int. conf. of ICSP'04, pp.319-322, 2004.
  7. S.G. Lim, D.S. Kang, "Performance of SE-MMA Blind Equalization Algorithm in QAM System", Jour. of I.I.B.C., Vol.13, No.3, pp.63-69, June 2013.