DOI QR코드

DOI QR Code

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul (Department of Postgraduate Education, Carolinum Dental University Institute gGmbH, Department of Prosthetic Dentistry, Goethe-University Frankfurt am Main) ;
  • Sander, Anna (Department of Prosthetic Dentistry, Faculty of Oral and Dental Medicine at JW Goethe-University Frankfurt am Main) ;
  • Wu, Yanyun (Department of Postgraduate Education, Faculty of Oral and Dental Medicine at JW Goethe-University Frankfurt am Main) ;
  • Felber, Roland (Department of Postgraduate Education, Carolinum Dental University Institute gGmbH, Department of Prosthetic Dentistry, Goethe-University Frankfurt am Main) ;
  • Lauer, Hans-Christoph (Department of Prosthetic Dentistry, Carolinum Dental University Institute gGmbH, Department of Prosthetic Dentistry, Goethe-University Frankfurt am Main) ;
  • Rosentritt, Martin (Department of Prosthetic Dentistry, UKR University Hospital Regensburg)
  • Received : 2017.05.05
  • Accepted : 2017.09.12
  • Published : 2018.04.30

Abstract

PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.

Keywords

References

  1. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32. https://doi.org/10.1016/S0022-3913(96)90413-8
  2. Rimmer S. Modern dental ceramics: An overview. Int Dent SA 2006;8:32?9.
  3. Griggs JA. Recent advances in materials for all-ceramic restorations. Dent Clin North Am 2007;51:713-27. https://doi.org/10.1016/j.cden.2007.04.006
  4. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  5. Sorrentino R, De Simone G, Tete S, Russo S, Zarone F. Fiveyear prospective clinical study of posterior three-unit zirconia-based fixed dental prostheses. Clin Oral Investig 2012;16: 977-85. https://doi.org/10.1007/s00784-011-0575-2
  6. Schmitter M, Mueller D, Rues S. Chipping behaviour of allceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent 2012;40:154-62. https://doi.org/10.1016/j.jdent.2011.12.007
  7. Kirmali O, Akin H, Ozdemir AK. Shear bond strength of veneering ceramic to zirconia core after different surface treatments. Photomed Laser Surg 2013;31:261-8. https://doi.org/10.1089/pho.2013.3487
  8. Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012;4:162-9. https://doi.org/10.4047/jap.2012.4.3.162
  9. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21:476-82. https://doi.org/10.1016/j.dental.2004.07.013
  10. Wimmer T, Hostettler J, Beuer F, Stawarczyk B. Load-bearing capacity of soldered and subsequently veneered 4-unit zirconia FDPs. J Mech Behav Biomed Mater 2013;23:1-7. https://doi.org/10.1016/j.jmbbm.2013.03.024
  11. Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013; 29:307-16. https://doi.org/10.1016/j.dental.2012.11.012
  12. Preis V, Letsch C, Handel G, Behr M, Schneider-Feyrer S, Rosentritt M. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dent Mater 2013;29:e113-21. https://doi.org/10.1016/j.dental.2013.04.011
  13. Zhang Y, Mai Z, Barani A, Bush M, Lawn B. Fractureresistant monolithic dental crowns. Dent Mater 2016;32:442-9. https://doi.org/10.1016/j.dental.2015.12.010
  14. Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater 2013; 29:1201-8. https://doi.org/10.1016/j.dental.2013.09.004
  15. Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture strength of aged monolithic and bilayer zirconia-based crowns. Biomed Res Int 2015;2015:418641.
  16. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61. https://doi.org/10.2334/josnusd.57.255
  17. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci 2004;12:26-36. https://doi.org/10.1590/S1678-77572004000500004
  18. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
  19. Nakamura K, Mouhat M, Nergard JM, Laegreid SJ, Kanno T, Milleding P, Ortengren U. Effect of cements on fracture resistance of monolithic zirconia crowns. Acta Biomater Odontol Scand 2016;2:12-9. https://doi.org/10.3109/23337931.2015.1129908
  20. Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328-33. https://doi.org/10.1016/j.jmbbm.2016.04.014
  21. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
  22. Papia E, Larsson C, du Toit M, Vult von Steyern P. Bonding between oxide ceramics and adhesive cement systems: a systematic review. J Biomed Mater Res B Appl Biomater 2014;102:395-413. https://doi.org/10.1002/jbm.b.33013
  23. Kelly JR. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999;81:652-61. https://doi.org/10.1016/S0022-3913(99)70103-4
  24. Rosentritt M, Behr M, Scharnagl P, Handel G, Kolbeck C. Influence of resilient support of abutment teeth on fracture resistance of all-ceramic fixed partial dentures: an in vitro study. Int J Prosthodont 2011;24:465-8.
  25. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of allceramic fixed-partial dentures. Dent Mater 2006;22:176-82. https://doi.org/10.1016/j.dental.2005.04.024
  26. Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater 2009;25:348-52. https://doi.org/10.1016/j.dental.2008.08.009
  27. Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G. Approach for valuating the significance of laboratory simulation. J Dent 2008;36:1048-53. https://doi.org/10.1016/j.jdent.2008.09.001
  28. Rosentritt M, Steiger D, Behr M, Handel G, Kolbeck C. Influence of substructure design and spacer settings on the in vitro performance of molar zirconia crowns. J Dent 2009;37:978-83. https://doi.org/10.1016/j.jdent.2009.08.003
  29. Rosentritt M, Behr M, Thaller C, Rudolph H, Feilzer A. Fracture performance of computer-aided manufactured zirconia and alloy crowns. Quintessence Int 2009;40:655-62.
  30. Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G. In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont 2000;13:387-91.
  31. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
  32. Rekow ED, Harsono M, Janal M, Thompson VP, Zhang G. Factorial analysis of variables influencing stress in all-ceramic crowns. Dent Mater 2006;22:125-32. https://doi.org/10.1016/j.dental.2005.04.010
  33. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 2013;17:275-84. https://doi.org/10.1007/s00784-012-0700-x
  34. Rauch A, Reich S, Schierz O. Chair-side generated posterior monolithic lithium disilicate crowns: clinical survival after 6 years. Clin Oral Investig 2017;21:2083-9. https://doi.org/10.1007/s00784-016-1998-6
  35. Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont 2015;7:475-83. https://doi.org/10.4047/jap.2015.7.6.475
  36. Ma L, Guess PC, Zhang Y. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses. Dent Mater 2013;29:742-51. https://doi.org/10.1016/j.dental.2013.04.004
  37. Stawarczyk B, Beuer F, Ender A, Roos M, Edelhoff D, Wimmer T. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials. Dent Mater J 2013;32:888-95. https://doi.org/10.4012/dmj.2013-147
  38. Al-Wahadni AM, Hussey DL, Grey N, Hatamleh MM. Fracture resistance of aluminium oxide and lithium disilicatebased crowns using different luting cements: an in vitro study. J Contemp Dent Pract 2009;10:51-8.
  39. Vult von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil 2006; 33:682-9. https://doi.org/10.1111/j.1365-2842.2005.01604.x
  40. Raadsheer MC, van Eijden TM, van Ginkel FC, Prahl-Andersen B. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res 1999;78:31-42. https://doi.org/10.1177/00220345990780010301
  41. Bindl A, Luthy H, Mormann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22:29-36. https://doi.org/10.1016/j.dental.2005.02.007
  42. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33:427-33. https://doi.org/10.1093/ejo/cjq097

Cited by

  1. Fracture Resistance of Monolithic Zirconia Crowns on Four Occlusal Convergent Abutments in Implant Prosthesis vol.9, pp.13, 2019, https://doi.org/10.3390/app9132585
  2. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows vol.9, pp.14, 2018, https://doi.org/10.3390/app9142778
  3. Investigation of the effects of cement in different thicknesses and mechanical properties on implant with zirconia crown: A finite element analysis vol.12, pp.5, 2020, https://doi.org/10.4103/jioh.jioh_348_19
  4. Fatigue Failure Load of Molars with Thin-Walled Prosthetic Crowns Made of Various Materials: A 3D-FEA Theoretical Study vol.12, pp.None, 2020, https://doi.org/10.2147/ccide.s286826
  5. Does the application of surface treatments in different sintering stages affect flexural strength and optical properties of zirconia? vol.32, pp.1, 2020, https://doi.org/10.1111/jerd.12552
  6. Clinical factors affecting the translucency of monolithic Y-TZP ceramics vol.108, pp.4, 2018, https://doi.org/10.1007/s10266-019-00446-2
  7. Strength and aging resistance of monolithic zirconia: an update to current knowledge vol.56, pp.1, 2018, https://doi.org/10.1016/j.jdsr.2019.09.002
  8. Prospective study of monolithic zirconia crowns: clinical behavior and survival rate at a 5-year follow-up vol.65, pp.3, 2018, https://doi.org/10.2186/jpr.jpr_d_20_00034
  9. Microleakage of thin-walled monolithic zirconia and polymer-containing CAD-CAM crowns vol.125, pp.2, 2018, https://doi.org/10.1016/j.prosdent.2019.11.026
  10. Assessment of Tooth Preparations Submitted to Dental Laboratories for Fabrication of Monolithic Zirconia Crowns vol.9, pp.10, 2018, https://doi.org/10.3390/dj9100112
  11. Fracture Resistance and Failure Mode of Mandibular Molar Restored by Occlusal Veneer: Effect of Material Type and Dental Bonding Surface vol.14, pp.21, 2018, https://doi.org/10.3390/ma14216476