DOI QR코드

DOI QR Code

Acoustic Emission based early fault detection and diagnosis method for pipeline

음향방출 기반 배관 조기 결함 검출 및 진단 방법

  • Kim, Jaeyoung (Dept. Electrical, Electronics, and Computer engineering, Ulsan Univ.) ;
  • Jeong, Inkyu (Dept. Electrical, Electronics, and Computer engineering, Ulsan Univ.) ;
  • Kim, Jongmyon (Dept. Electrical, Electronics, and Computer engineering, Ulsan Univ.)
  • Received : 2017.12.04
  • Accepted : 2018.01.09
  • Published : 2018.03.31

Abstract

The deteriorated pipline often causes the unexpected leakage and crack. Negligence and late maintenance leads the enormous damage for gas and water resource. This paper proposes early fault detection and diagnosis algorithm for pipeline using acoustic emission (AE) signals. Early fault detection method for pipeline compares the frequency amplitude of the spectrum to that of the spectrum in normal condition. Larger amplitude of the spectrum indicates abnormal condition. Early fault diagnosis algorithm uses support vector machines (SVM), which is trained for normal and abnormal conditions to diagnose the measured AE signal from the target pipeline. In the experiment, a pipeline testbed is constructed similarly to real industrial pipeline. Normal, 5mm cracked, 10mm holed pipelines are installed and tested in this study. The proposed fault detection and diagnosis technique is validated as an efficient approach to detect early faulty condition of pipeline.

노후된 배관은 예기치 못한 누수나 균열을 발생시킨다. 이를 방치하거나 늦게 대응하면 지속적인 가스자원, 수자원 등의 막대한 손실을 발생시킨다. 본 논문에서는 배관의 결함을 검출하기 위해 음향방출 신호를 사용하는 배관 조기 결함 검출 방법과 진단 알고리즘을 제안한다. 배관의 결함으로 인해 변형이 생길 경우 배관의 고유진동수가 변화하므로 이를 관찰함으로써 배관의 이상 유무를 판단할 수 있다. 배관 조기결함 검출 방법은 정상상태의 스펙트럼과 취득된 신호의 스펙트럼을 주파수 성분의 크기에 대해 비교함으로써 배관의 결함 유무를 판단한다. 배관 조기 결함 진단 알고리즘은 정상상태와 결함상태를 기계학습 알고리즘인 서포트 벡터 머신(SVM)으로 학습하고 실제 취득된 배관 음향방출 신호를 입력하여 배관 상태를 진단한다. 실험에서는 제작된 배관 테스트베드를 사용하여 정상상태, 5mm 균열 상태, 10mm 균열 및 파공 상태를 가공하여 제안 방법을 테스트하였다. 실험 결과에서는 제안한 검출 방법 및 진단 알고리즘의 배관 조기 결함 검출 성능의 우수성을 검증하였다.

Keywords