DOI QR코드

DOI QR Code

Monitoring of Heavy Metals Migrated from Polylactide (PLA) Food Contact Materials in Korea

국내 유통 폴리락타이드(PLA) 식품용 기구 및 용기·포장의 중금속 이행량 모니터링

  • Kim, Hyeonuk (Imported Food Analysis Division, Gyeongin Regional Food and Drug Administration, Ministry of Food and Drug Safety) ;
  • Park, So-Yeon (Imported Food Analysis Division, Gyeongin Regional Food and Drug Administration, Ministry of Food and Drug Safety) ;
  • Jo, Ye-Eun (Imported Food Analysis Division, Gyeongin Regional Food and Drug Administration, Ministry of Food and Drug Safety) ;
  • Park, Yongchjun (Imported Food Analysis Division, Gyeongin Regional Food and Drug Administration, Ministry of Food and Drug Safety) ;
  • Park, Se-Jong (Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Kim, Meehye (Imported Food Analysis Division, Gyeongin Regional Food and Drug Administration, Ministry of Food and Drug Safety)
  • 김현욱 (경인지방식품의약품안전청 수입식품분석과) ;
  • 박소연 (경인지방식품의약품안전청 수입식품분석과) ;
  • 조예은 (경인지방식품의약품안전청 수입식품분석과) ;
  • 박용춘 (경인지방식품의약품안전청 수입식품분석과) ;
  • 박세종 (식품의약품안전평가원 첨가물포장과) ;
  • 김미혜 (경인지방식품의약품안전청 수입식품분석과)
  • Received : 2018.02.14
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

In the present study, a variety of polylactide (PLA) articles (n = 211) were tested for migration of lead (Pb), cadmium (Cd) and arsenic (As) into the food simulant (4% v/v acetic acid). Pb, Cd, and As were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Migration tests were performed at $70^{\circ}C$ and $100^{\circ}C$ for 30 min. The amounts of Pb, Cd, and As increased at $100^{\circ}C$ for 30 min compared with levels at $70^{\circ}C$. However, the migration at both conditions was very low. The maximum level of Pb at $100^{\circ}C$ for 30 min corresponded to 1% of the migration limit. The estimated daily intakes (EDI) based on safety evaluation ranged from $2.5{\times}10^{-5}$ to $2.0{\times}10^{-3}{\mu}g/kg\;bw/day$ for Pb, Cd, and As. The EDI calculated from migration of Pb at $100^{\circ}C$ for 30 min in PLA was the maximum value, $2.0{\times}10^{-3}{\mu}g/kg\;bw/day$, which corresponded to 0.055% of provisional tolerable weekly intake (PTWI, $25{\mu}g/kg\;bw/week$). The data from this study represent a valuable source for science-based safety control and management of hazardous heavy metals migrating from polylactide food contact materials.

폴리락타이드 재질의 식품용 기구 및 용기 포장에서 식품으로 이행될 우려가 있는 유해 중금속인 납, 카드뮴 및 비소의 이행량을 측정하고 안전성을 평가하기 위하여 국내에 유통중인 폴리락타이드 시료 총 211건을 수거하였다. 용출실험은 '식품용 기구 및 용기 포장 공전'의 조건에 따라 식품모사용매인 4% acetic acid로 하였으며 온도조건으로 $70^{\circ}C$와 가혹사용조건인 $100^{\circ}C$ 모두 적용하여 이행량을 비교하였다. 납, 카드뮴 및 비소의 이행량은 모두 $70^{\circ}C$보다 $100^{\circ}C$의 조건에서 증가하는 경향을 보였으나, 납의 최대 이행량은 기준 규격과 비교하여 1.0%의 낮은 수준이었고, 카드뮴은 모두 미량이 검출되었으며, 비소의 최대 이행량은 기준 규격 대비 3.9%의 낮은 수준으로 기준 규격을 초과하는 시료는 없었다. 이행량 결과를 바탕으로 납, 카드뮴 및 비소의 일일추정섭취량을 산출한 후 잠정주간섭취허용량 등과 비교하는 안전성평가를 진행하였으며, 국내에 유통되는 식품용 폴리락타이드 기구 및 용기 포장을 통한 납, 카드뮴 및 비소의 일일추정섭취량은 $2.5{\times}10^{-5}{\sim}2.0{\times}10^{-3}{\mu}g/kg\;bw/day$인 것으로 산출되었다. 용출조건별로는 $70^{\circ}C$, 30분에서 카드뮴의 일일추정섭취량이 가장 낮았고, $100^{\circ}C$, 30분에서의 납 일일추정섭취량이 $2.0{\times}10^{-3}{\mu}g/kg\;bw/day$로 제일 높게 나타났으나, 납의 위해도는 인체안전기준($25{\mu}g/kg\;bw/week$)과 비교시 0.055% 수준으로 매우 낮음을 확인되었다. 이를 통하여 국내 유통 폴리락타이드 재질 식품용 기구 및 용기 포장에서의 납, 카드뮴 및 비소의 이행량은 매우 낮은 수준임을 확인하였고, 본 연구의 결과는 향후 식품용 기구 및 용기 포장의 안전관리를 위한 과학적인 근거자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Schopmeyer, U.L. and Hickley, R.J., Lactic acid in industrial fermentations (1954).
  2. Tsuji, H. ed., Polylactides in biopolymers 4 polyesters III applications and commercial products (2002).
  3. Jun Woo Lee, The prospect and policy proposal of biodegradable plastic, KISTI (2012).
  4. Karen A. Barnes, C. Richard Sinclair and D.H. Watson, Chemical migration and food contact materials, CRC Press (2007).
  5. Kim MH, Kim JS, Sho YS, Chung SY and Lee Jo, The study on metal contents in various foods. Korea J. Food Technol., 35, 561-567 (2003).
  6. KFDA risk management team, Hazardous material series 2007 vol 2. lead, KFDA (2007).
  7. Lee SR and Lee MG, Contamination and risk analysis of heavy metal in korean foods, J. Food Hyg. Saf., 16, 324-332 (2001).
  8. IARC. Inorganic and organic lead compounds. IARC monographs on the evaluation of carcinogenic risks to humans. 87, (2006).
  9. WHO. Evaluation of certain food additives and contaminants (Fifty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series No. 896, Geneva, WHO. 2000. Accessed 17.10.27 http://apps.sho.int/iris/bitstream/10665/42378/1/WHO_TRS_896.pdf.
  10. JECFA. Summary and conclusions of seventy-third meeting (JECFA/73/SC). WHO. Issued 24th June, 2010. Accessed 17.10.27 http:www.who.int/foodsafety/publications/chem/summary73.pdf.
  11. JECFA. Summary and conclusions of seventy-third meeting (JECFA/72/SC). WHO. Issued 16th March, 2010. Accessed 17.10.27 http:www.who.int/foodsafety/publications/chem/summary72.pdf.
  12. Guidance for industry : Preparation of premarket submission for food contact substances : Chemistry recommendations, US FDA (2007).
  13. Bratinova S, Raffael B, Simoneau C. Guidelines for performance criteria and validation procedures of analytical methods used in controls of food contact materials. JRC Scientific and Technical Reports, EUR 24105 EN-1st edition. European Commission (2009).
  14. Elision S. L. R., Roesslein M. L., Williams A., Quantifying uncertainty in analytical measurement, EURACHEM (2000).
  15. Guide to the expression of uncertainty in measurement, International Organization for Standardization (1995).
  16. Gramdfil C., Flandroy. P, Jerome. R, Control of the biodegradation rate of poly (DL-Lactide) microparticles intended as chemometabolization materials, Official journal of the controlled release society, 38, 109-122 (1996). https://doi.org/10.1016/0168-3659(95)00102-6
  17. R. E. CONN 1, Safety Assessment of Polylactide (PLA) for Use as a Food-contact Polymer, Food Chem Toxicol, 33, 273-283 (1995). https://doi.org/10.1016/0278-6915(94)00145-E
  18. Gaurav Kale, Auras Rafael, Singh. Sher Paul, Narayan Ramani, Biodegradability of polylactide bottles in real and simulated composting conditions, Polymer testing, 26, 1049-1061 (2007). https://doi.org/10.1016/j.polymertesting.2007.07.006
  19. Frank Welle, Sorption and migration behavior of polylactic acid (PLA) bottles in comparison to PET bottles, VR. Verpackung-Rundschau, 64, 46 (2013).
  20. M. Mutsuga, Y. Kawamura, K. Tanamoto, Migration of lactic acid, lactide and oligomers from polylactide food-contact materials, Food Additives & Contaminants: Part A, 25, 1283-1290 (2008). https://doi.org/10.1080/02652030802017529
  21. Injoo Chin, Jaeyun Lee, Soobyung Lee, Hanna Lee, Jinkyung Lee, Jinkyung Lee, Taehyun Kim, Mobeom Koo, Study of standards and specifications for food-packaging bioplastics (2016).
  22. Jae-Chon Choi, Se-Jong Park, Hyeah Goh, Ju Yeun Lee, Mi Ok Eom and Meehye Kim, A study on migration of heavy metals from kitchen utensils including glassware, ceramics, enamel, earthenware and plastics, J. Food Hyg. Saf., 29, 334-339 (2014). https://doi.org/10.13103/JFHS.2014.29.4.334
  23. WHO. Evaluation of certain food additives and contaminants (Fifty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series No. 896, Geneva, WHO. 2000. Accessed 17.10.27 http://apps.sho.int/iris/bitstream/10665/42378/1/WHO_TRS_896.pdf.
  24. JECFA. Summary and conclusions of seventy-third meeting (JECFA/73/SC). WHO. Issued 24th June, 2010. Accessed 17.10.27 http:www.who.int/foodsafety/publications/chem/summary73.pdf.
  25. Friberg L, Kjellstrom T, Nordberg G.F. Cadmium. In: Friberg L, Nordberg G.F, Vouk V.B. Handbook on the toxicology of metals. Second Edition. Elsevier, Amsterdam, New York, Oxford (1986).