DOI QR코드

DOI QR Code

Applications and Prospects of Stable Isotope in Aquatic Ecology and Environmental Study

수생태 환경 연구에 있어 안정동위원소의 활용과 전망

  • Choi, Bohyung (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 최보형 (한양대학교 해양융합과학과) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Received : 2018.01.05
  • Accepted : 2018.03.02
  • Published : 2018.03.31

Abstract

Stable isotope approach for aquatic ecology and environmental sciences has been introduced as very useful technique since 1980s and also has been applied to investigate various issues in aquatic ecology and environmental study last 10 years in Korea. Especially carbon and nitrogen isotope ratios have been mainly used to understand food web energy flow and ecosystem structure. In addition, nitrogen isotope ratio has been applied for nitrogen cycle and source identification as well as biomagnification studies. However, large temporal or spatial variations of nitrogen isotope ratio of primary producer have been found in many aquatic environments, and it is regarded as the critical problems to determine trophic level of aquatic animals. Recently, the compound specific isotope analysis of nitrogen within individual amino acids has been developed as an alternative method for trophic ecology. This article introduces the progress history of stable isotope application in aquatic ecology and environmental sciences, and also suggests new direction based on future prospects in stable isotope ecology and environmental study.

안정동위원소비는 전 세계적으로 수생태 환경 연구에서 매우 활발하게 적용되고 있는 분야로써, 국내에서도 2000년대 이후 담수 및 연안 생태계의 먹이망 구조 연구 등 다양한 연구에서 활용되고 있다. 최근에는 기존의 총 조직내의 안정동위원소 분석기법의 한계점을 인지하고 보완하기 위한 방안으로 아미노산의 질소 안정동위원소 분석 기법이 개발되었으며, 이를 활용한 다양한 연구 사례들이 보고됨에 따라 수생태 연구의 활용범위가 급격히 확대되고 있다. 아미노산의 질소 안정동위원소 분석기법의 기술적인 접근성의 한계에 의해 현재까지 국내에서 수생태계 연구를 위해 아미노산의 질소 안정동위원소비를 활용한 연구는 제한적인 실정이지만, 국내 다양한 하천 및 호수 그리고 연안의 환경 변화 특성을 고려할 때, 향후 수생태 환경연구에 있어 그 유용성과 활용 가치가 대단히 높을 것으로 전망된다.

Keywords

References

  1. Batista, F.C., A.C. Ravelo, J. Crusius, M.A. Casso and M.D. McCarthy. 2014. Compound specific amino acid ${\delta}^{15}N$ in marine sediments: A new approach for studies of the marine nitrogen cycle. Geochimica et Cosmochimica Acta 142: 553-569. https://doi.org/10.1016/j.gca.2014.08.002
  2. Bowes, R.E. and J.H. Thorp. 2015. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6(1): 1-12. https://doi.org/10.1890/ES14-00174.1
  3. Carstens, D., M.F. Lehmann, T.B. Hofstetter and C.J. Schubert. 2013. Amino acid nitrogen isotopic composition patterns in lacustrine sedimenting matter. Geochimica et Cosmo-Chimica acta, 121: 328-338. https://doi.org/10.1016/j.gca.2013.07.020
  4. Chang, K.H., D.I. Seo, S.M. Go, S. Masaki, G.S. Nam, J.Y. Choi, M.S. Kim, K.S. Jeong, G.H. La and H.W. Kim. 2016. Feeding behavior of crustaceans (cladocera, copepoda and ostracoda): food selection measured by stable isotope analysis using R package SIAR in mesocosm experiment. Korean Journal of Ecology and Environment 49: 279-288. https://doi.org/10.11614/KSL.2016.49.4.279
  5. Chikaraishi, Y., N.O. Ogawa and N. Ohkouchi. 2010. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids, p. 37-51. In: Earth, life, and isotopes (Ohokouchi, N., I. Tayasu and K. Koba, eds.). Kyoto Univ. Press.
  6. Chikaraishi, Y., S.A. Steffan, N.O. Ogawa, N.F. Ishikawa, Y. Sasaki, M. Tsuchiya and N Ohkouchi. 2014. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecology and Evolution 4(12): 2423-2449. https://doi.org/10.1002/ece3.1103
  7. Chikaraishi, Y., Y. Kashiyama, N.O. Ogawa, H. Kitazato and N. Ohkouchi. 2007. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Marine Ecology Progress Series 342: 85-90. https://doi.org/10.3354/meps342085
  8. Choi, J.Y., G.H. La, K.S. Jeong, S.K. Kim, K.H. Chang and G.J. Joo. 2012. Classification by zooplankton inhabit character and freshwater microbial food web: importance of epiphytic zooplankton as energy source for high-level predator. Korean Journal of Limnology 45(4): 444-452. https://doi.org/10.11614/KSL.2012.45.4.444
  9. Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo. 2013. Zooplankton Community Distribution and Food Web Structure in Small Reservoirs: Influence of Land Uses around Reservoirs and Kittoral Aquatic Plant on Zooplankton. Korean Journal of Ecology and Environment 46(3): 332-342. https://doi.org/10.11614/KSL.2013.46.3.332
  10. DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et cosmochimica acta 42(5): 495-506. https://doi.org/10.1016/0016-7037(78)90199-0
  11. DeNiro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et cosmochimica acta 45(3): 341-351. https://doi.org/10.1016/0016-7037(81)90244-1
  12. Doi, H., K. Chang, Y. Obayashi, M. Yoshihara, M. Shime, T. Yamamoto, Y. Nishibe and S.I. Nakano. 2008. Attached microalgae contribute to planktonic food webs in bays with fish and pearl oyster farms. Marine Ecology Progress Series 353: 107-113. https://doi.org/10.3354/meps07202
  13. Doi, H., K.H. Chang, T. Ando, I. Ninomiya, H. Imai and S.I. Nakano. 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos 118(1): 138-144. https://doi.org/10.1111/j.1600-0706.2008.17171.x
  14. Doucette, J.L., B. Wissel and C.M. Somers. 2011. Cormorantfisheries conflicts: stable isotopes reveal a consistent niche for avian piscivores in diverse food webs. Ecological Applications 21(8): 2987-3001. https://doi.org/10.1890/10-2384.1
  15. Dubois, S., B. Jean-Louis, B. Bertrand and S. Lefebvre. 2007. Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. Journal of experimental marine biology and ecology 351(1): 121-128. https://doi.org/10.1016/j.jembe.2007.06.020
  16. France, R.L. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40(7): 1310-1313. https://doi.org/10.4319/lo.1995.40.7.1310
  17. Fry, B. and E.B. Sherr. 1989. ${\delta}^{13}C$ measurements as indicators of carbon flow in marine and freshwater ecosystems. In Stable isotopes in ecological research, Springer 196-229.
  18. Fry, B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72(6): 2293-2297. https://doi.org/10.2307/1941580
  19. Gal, J.K., G. Ock, H.K. Park and K.H. Shin. 2016. The effect of summer monsoon on pelagic and littoral food webs in a large regulated reservoir (Lake Paldang, Korea): A stable isotope approach. Journal of Freshwater Ecology 31(3): 327-340.
  20. Gal, J.K., M.S. Kim, Y.J. Lee, J. Seo and K.H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45: 242-251.
  21. Ha, S., W.K. Min, D.S. Kim and K.H. Shin. 2014. Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes. Journal of the Marine Biological Association of the United Kingdom 94(1): 121-127. https://doi.org/10.1017/S0025315413001148
  22. Hannides, C.C., B.N. Popp, M.R. Landry and B.S. Graham. 2009. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnology and Oceanography 54(1): 50-61. https://doi.org/10.4319/lo.2009.54.1.0050
  23. Hong, Y.J., S.K. Jin and S.G. Hong. 2001. Identification of the sources of nitrate using stable isotope mass ratio in rural watersheds. Journal of the Korean Society of Agricultural Engineers 43: 120-128.
  24. Ishikawa, N.F., Y. Kato, H. Togashi, M. Yoshimura, C. Yoshimizu, N. Okuda and I. Tayasu. 2014. Stable nitrogen isotopic composition of amino acids reveals food web structure in stream ecosystems. Oecologia 175(3): 911-922. https://doi.org/10.1007/s00442-014-2936-4
  25. Jeong, S.J., M.S. Yoon, C.R. Lee, J.K. Ahn, H.S. Noh and J.B. Jeong. 2014. Assessing the ecological function of Doksal in Taeanhaean National park. Journal of National Park Research 5: 68-75.
  26. Kang, C.K., E.J. Choy, H.S. Song, H.J. Park, I.S. Soe, Q. Jo and K.S. Lee. 2007. Isotopic determination of food sources of benthic invertebtates in two different macroalgal habitats in the Korean coasts. 'The Sea' Journal of the Korean Society of Oceanography 12: 380-389.
  27. Kang, C.K., E.J. Choy, Y.S. Kim and H.J. Park. 2009. ${\delta}^{13}C$ evidence for the Importance of local benthic producers to fish nutrition in the inner bay systems in the southern coast of Korea. 'The Sea' Journal of the Korean Society of Oceanography 14: 56-62.
  28. Kang, J.I., J. Kim and S.D. Lee. 2011. Studies on stream ecosystem in the Bukhan River using stable isotopes. Journal of Wetlands Research 13: 515-522.
  29. Kang, S., B. Choi, Y. Han and K.H. Shin. 2016. Ecological importance of benthic microalgae in the intertidal mud flat of Yeongheung Island; application of stable isotope analysis (SIA). Korean Journal of Ecology and Environment 49: 80-88. https://doi.org/10.11614/KSL.2016.49.2.080
  30. Kim, E., H. Kim, K.H. Shin, M.S. Kim, S.R. Kundu, B.G. Lee and S. Han. 2012. Biomagnification of mercury through the benthic food webs of a temperate estuary: Masan Bay, Korea. Environmental toxicology and chemistry 31(6): 1254-1263. https://doi.org/10.1002/etc.1809
  31. Kim, M.S., J.M. Kim, J.Y. Hwang, B.K. Kim, H.S. Cho, S.J. Youn, S.Y. Hong, O.S. Kwon and W.S. Lee. 2014. Determination of the origin of particulate organic matter at the lake Paldang using stable isotope ratio (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 47(2): 127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  32. Kim, M.S., J.Y. Hwang, O.S. Kwon and W.S. Lee. 2013. Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application. Korean Journal of Ecology and Environment 46(4): 471-487. https://doi.org/10.11614/KSL.2013.46.4.471
  33. Kim, M.S., W.S. Lee, K. Suresh Kumar, K.H. Shin, W. Robarge, M. Kim and S.R. Lee. 2016. Effects of HCl pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Communications in Mass Spectrometry 30(13): 1567-1575. https://doi.org/10.1002/rcm.7600
  34. Kim, M.S., Y.J. Lee, K.G. An, B.H. Kim, S.J. Hwang and K.H. Shin. 2014. Allochthonous organic matter contribution to foodweb in Shingu agricultural researvoir after rainfall period. Korean Journal of Ecology and Environment 47(1): 53-61. https://doi.org/10.11614/KSL.2014.47.1.053
  35. Larsen, T., M.J. Wooller, M.L. Fogel and D.M. O'Brien. 2012. Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem? Rapid Communications in Mass Spectrometry 26(13): 1541-1548. https://doi.org/10.1002/rcm.6259
  36. Lorrain, A., B.S. Graham, B.N. Popp, V. Allain, R.J. Olson, B.P. Hunt, M. Potier, B. Fry, F. Galván-Magaña, C.E.R. Menkes and S. Kaehler. 2015. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Research Part II: Topical Studies in Oceanography 113: 188-198. https://doi.org/10.1016/j.dsr2.2014.02.003
  37. Macko, S.A., M.E. Uhle, M.H. Engel and V. Andrusevich. 1997. Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry. Analytical Chemistry 69(5): 926-929. https://doi.org/10.1021/ac960956l
  38. Masclaux, H., M.E. Perga, M. Kagami, C. Desvilettes, G. Bourdier and A. Bec. 2013. How pollen organic matter enters freshwater food webs. Limnology and Oceanography 58(4): 1185-1195. https://doi.org/10.4319/lo.2013.58.4.1185
  39. McCarthy, M.D., R. Benner, C. Lee and M.L. Fogel. 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta 71(19): 4727-4744. https://doi.org/10.1016/j.gca.2007.06.061
  40. McClelland, J.W. and J.P. Montoya. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83(8): 2173-2180. https://doi.org/10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2
  41. McHugh, P.A., A.R. McIntosh and P.G. Jellyman. 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology letters 13(7): 881-890. https://doi.org/10.1111/j.1461-0248.2010.01484.x
  42. McMahon, K.W. and M.D. McCarthy. 2016. Embracing variability in amino acid ${\delta}^{15}N$ fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere 7(12): e01511. https://doi.org/10.1002/ecs2.1511
  43. McMahon, K.W., S.R. Thorrold, L.A. Houghton and M.L. Berumen. 2016. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180(3): 809-821. https://doi.org/10.1007/s00442-015-3475-3
  44. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between ${\delta}^{15}N$ and animal age. Geochimica et cosmochimica acta 48(5): 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  45. Moens, T. and M. Vincx. 1997. Observations on the Feeding Ecology of Estuarine Nematodes. Journal of the Marine Biological Association of the United Kingdom 77(1): 211-227. https://doi.org/10.1017/S0025315400033889
  46. Ojeda, F.P. and A.A. Munoz. 1999. Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Marine Ecology Progress Series 184: 219-229. https://doi.org/10.3354/meps184219
  47. Parnell, A.C., R. Inger, S. Bearhop and A.L. Jackson. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS one 5(3): e9672. https://doi.org/10.1371/journal.pone.0009672
  48. Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, M.J.W. Moore, A.C. Parnell, B.X. Semmens and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823-835. https://doi.org/10.1139/cjz-2014-0127
  49. Phillips, D.L., S.D. Newsome and J.W. Gregg. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144(4): 520-527. https://doi.org/10.1007/s00442-004-1816-8
  50. Popp, B.N., B.S. Graham, R.J. Olson, C.C. Hannides, M.J. Lott, G.A. LopezIbarra, F. Galvan-Magana and B. Fry. 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Terrestrial Ecology 1: 173-190.
  51. Post, D.M., M.L. Pace and N.G. Hairston Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405(6790): 1047-1079. https://doi.org/10.1038/35016565
  52. Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  53. Reich, K.J., K.A. Bjorndal and C.M. Del Rio. 2008. Effects of growth and tissue type on the kinetics of 13C and $^{15}N$ incorporation in a rapidly growing ectotherm. Oecologia 155(4): 651-663. https://doi.org/10.1007/s00442-007-0949-y
  54. Robbins, C.T., L.A. Felicetti and M. Sponheimer. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144(4): 534-540. https://doi.org/10.1007/s00442-005-0021-8
  55. Rolff, C. 2000. Seasonal variation in ${\delta}^{13}C$ and ${\delta}^{15}N$ of size-fractionated plankton at a coastal station in the northern Baltic proper. Marine Ecology Progress Series 203: 47-65. https://doi.org/10.3354/meps203047
  56. Sackett, D.K., J.C. Drazen, C.A. Choy, B. Popp and G.L. Pitz. 2015. Mercury sources and trophic ecology for Hawaiian Bottomfish. Environmental science & technology 49(11): 6909-6918. https://doi.org/10.1021/acs.est.5b01009
  57. Schell, D.M., B.A. Barnett and K.A. Vinette. 1998. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Marine Ecology Progress Series 162: 11-23. https://doi.org/10.3354/meps162011
  58. Suh, Y.J. and K.H. Shin. 2013. Size-related and seasonal diet of the manila clam (Ruditapes philippinarum), as determined using dual stable isotopes. Estuarine, Coastal and Shelf Science 135: 94-105. https://doi.org/10.1016/j.ecss.2013.06.029
  59. Takano, Y., Y. Kashiyama, N.O. Ogawa, Y. Chikaraishi and N. Ohkouchi. 2010. Isolation and desalting with cation-exchange chromatography for compound-specific nitrogen isotope analysis of amino acids: application to biogeochemical samples. Rapid Communications in Mass Spectrometry 24(16): 2317-2323. https://doi.org/10.1002/rcm.4651
  60. Vander Zanden, M. and J.B. Rasmussen. 1999a. Primary consumer ${\delta}^{13}C$ and ${\delta}^{15}N$ and the trophic position of aquatic consumers. Ecology 80(4): 1395-1404. https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  61. Vander Zanden, M.J. and J.M. Casselman, J.B. Rasmussen. 1999b. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401(6752): 464-467. https://doi.org/10.1038/46762
  62. Vaslet, A., D.L. Phillips, C. France, I.C. Feller and C.C. Baldwin. 2012. The relative importance of mangroves and seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize: evidence from dietary and stable-isotope analyses. Journal of Experimental Marine Biology and Ecology 434: 81-93.
  63. Vokhshoori, N.L. and M.D. McCarth. 2014. Compound-specific ${\delta}^{15}N$ amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline ${\delta}^{15}N$ isoscapes for coastal ecosystems. PloS one 9(6): e98087. https://doi.org/10.1371/journal.pone.0098087
  64. Watanabe, S., M. Kodama and M. Fukuda. 2009. Nitrogen stable isotope ratio in the manila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats. Marine pollution bulletin 58(10): 1447-1453. https://doi.org/10.1016/j.marpolbul.2009.06.018
  65. Yoon, J.D., S.H. Park, K.H. Chang, J.Y. Choi, G.J. Joo, G.S. Nam, J. Yoon and M.H. Jang. 2015. Characteristics of fish fauna in the lower Geum River and identification of trophic guilds using stable isotopes analysis. Korean journal of environmental biology 33(1): 34-44. https://doi.org/10.11626/KJEB.2015.33.1.034