References
- Ai, Q. and Weaver, P.M. (2017), "Simplified analytical model for tapered sandwich beams using variable stiffness materials", J. Sandw. Struct. Mater., 19(1), 3-25. https://doi.org/10.1177/1099636215619775
- Banic, D., Bacciocchi, M., Tornabene, F. and Ferreira, A. (2017), "Influence of winkler-pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes", Appl. Sci., 7(12), 1228. https://doi.org/10.3390/app7121228
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Calim, F.F. (2016), "Transient analysis of axially functionally graded Timoshenko beams with variable cross-section", Compos.Part B: Eng., 98(Supplement C), 472-483. https://doi.org/10.1016/j.compositesb.2016.05.040
- Davoodinik, A.R. and Rahimi, G.H. (2011), "Large deflection of flexible tapered functionally graded beam", Acta Mechanica Sinica, 27(5), 767. https://doi.org/10.1007/s10409-011-0476-2
- El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda.Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Fahsi, B., Kaci, A., Tounsi, A. and Bedia, E.A.A. (2012), "A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings", J. Mech. Sci. Technol., 26(12), 4073-4079. https://doi.org/10.1007/s12206-012-0907-4
- Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9.
- Frostig, Y. (2009), "Elastica of sandwich panels with a transversely flexible core-A high order theory approach", Int. J. Solids Struct., 46, 2043-2059. https://doi.org/10.1016/j.ijsolstr.2008.05.007
- Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "Bending of nonsymmetric sandwich beams with flexible core-bending behavior", J. Eng. Mech., 117(9), 1931-1952. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:9(1931)
- Frostig, Y. and Thomsen, O.T. (2004), "High-order free vibration of sandwich panels with a flexible core", Int. J. Solids Struct., 41, 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051
- Ha, K.H. (1990), "Finite element analysis of sandwich plates: An overview", Comput. Struct., 37(4), 397-403. https://doi.org/10.1016/0045-7949(90)90028-Z
- Hu, H., Belouettar, S., Potier-Ferry, M. and Daya, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84, 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007
- Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B: Eng., 91, 126-134. https://doi.org/10.1016/j.compositesb.2016.01.031
- Li, S., Hu, J., Zhai, C. and Xie, L. (2013), "A unified method for modeling of axially and/or transversally functionally graded beams with variable cross-section profile", Mech. Based Des. Struct. Mach., 41(2), 168-188. https://doi.org/10.1080/15397734.2012.709466
- Liu, H., Liu, H. and Yang, J. (2017), "Clamped sandwich beams with thick weak cores from central impact: A theoretical study", Composite Structures In Press.
- Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B: Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
- Masoodi, A.R. and Moghaddam, S.H. (2015), "Nonlinear dynamic analysis and natural frequencies of gabled frame having flexible restraints and connections", J. Civil Eng. - KSCE, 19(6), 1819-1824. https://doi.org/10.1007/s12205-015-0285-4
- Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H. and Benyoucef, S. (2011), "Two new refined shear displacement models for functionally graded sandwich plates", Arch. Appl. Mech., 81(11), 1507-1522. https://doi.org/10.1007/s00419-010-0497-5
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006
- Nguyen, D.K. and Gan, B.S. (2014), "Large deflections of tapered functionally graded beams subjected to end forces", Appl. Math. Model., 38(11), 3054-3066. https://doi.org/10.1016/j.apm.2013.11.032
- Nguyen, N.T., Kim, N.I., Cho, I., Phung, Q.T. and Lee, J. (2014), "Static analysis of transversely or axially functionally graded tapered beams", Mater. Res. Innov., 18(2), S2-260-S262-264.
- Nguyen, T.K., Nguyen, N.D., Vo, T.P. and Thai, H.T. (2017), "Trigonometric-series solution for analysis of laminated composite beams", Compos. Struct., 160, 142-151. https://doi.org/10.1016/j.compstruct.2016.10.033
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2014), "Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory", J. Mech. Eng. Sci., 228(12), 2110-2131. https://doi.org/10.1177/0954406213516088
- Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B: Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012
- Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Nonlinear Mech., 65(Supplement C), 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011
- Panteghini, A. and Bardella, L. (2017), "Structural theory and finite element modelling of linear elastic sandwich beams subject to severe boundary conditions", Eur. J. Mech.- A/Solids, 61, 393-407. https://doi.org/10.1016/j.euromechsol.2016.10.012
- Phan, C.N., Kardomateas, G.A. and Frostig, Y. (2013), "Blast response of a sandwich beam/wide plate based on the extended high order sandwich panel theory and comparison with elasticity", J. Appl. Mech., 80(6), 1-11.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51(Supplement C), 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Rajasekaran, S. (2013), "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods", Appl. Math. Model., 37(6), 4440-4463. https://doi.org/10.1016/j.apm.2012.09.024
- Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of double-axially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003
- Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control In Press.
- Rezaiee-Pajand, M., Sani, A.A. and Hozhabrossadati, S.M. (2017), "Application of differential transform method to free vibration of gabled frames with rotational springs", Int. J. Struct. Stab. Dynam., 17(1), 1750012. https://doi.org/10.1142/S0219455417500122
- Santiuste, C., Thomsen, O.T. and Frostig, Y. (2011), "Thermo-mechanical load interactions in foam cored axi-symmetric sandwich circular plates-High-order and FE models", Compos. Struct., 93, 369-376. https://doi.org/10.1016/j.compstruct.2010.09.005
- Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66(Supplement C), 1-11. https://doi.org/10.1016/j.ast.2017.02.019
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149(Supplement C), 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240, 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
- Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. https://doi.org/10.1016/j.compstruc.2014.04.003
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.- A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
- Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2015), "Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory", Compos. Struct., 123(Supplement C):337-349. https://doi.org/10.1016/j.compstruct.2014.11.065
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B: Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M., Viola, E. and Reddy, J. (2017), "A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method", Appl. Sci., 7(2), 131. https://doi.org/10.3390/app7020131
- Venkataraman, S. and Sankar, B.V. (2003), "Elasticity Solution for Stresses in a Sandwich Beam with Functionally Graded Core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.6853
- Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials. New York, CRC Press
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030
- Xiang, X.M., Lu, G., Ma, G.W., Li, X.Y. and Shu, D.W. (2016), "Blast response of sandwich beams with thin-walled tubes as core", Eng. Struct., 127, 40-48. https://doi.org/10.1016/j.engstruct.2016.08.034
- Zare Jouneghani, F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solids Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
Cited by
- Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections pp.1869-5590, 2018, https://doi.org/10.1007/s13272-018-0311-6
- Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams vol.47, pp.5, 2019, https://doi.org/10.1080/15397734.2019.1596129
- Tapered beam-column analysis by analytical solution vol.172, pp.11, 2018, https://doi.org/10.1680/jstbu.18.00062
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
- Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
- Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
- Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.397
- Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams vol.5, pp.2, 2018, https://doi.org/10.12989/acd.2020.5.2.177
- Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
- Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis vol.6, pp.2, 2021, https://doi.org/10.12989/acd.2021.6.2.153
- Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam vol.12, pp.2, 2021, https://doi.org/10.12989/acc.2021.12.2.135
- Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.233