References
- Abaqus (2014), Abaqus analysis user's manual, Dassault Simulia, Version 6.14.
- ASTM Int. (2000), Standard Specification for Steel, Sheet, Carbon, and High-Strength, Low-Alloy, Hot-rolled and Coldrolled, ASTM. (A 568/A 568M)
- ASTM Int. (2009), Standard Test Methods for Tension Testing of Metallic Materials, ASTM, (C), pp.1-27.
- Borges, H., Martinez, G. and Graciano, C. (2016), "Impact response of expanded metal tubes: A numerical investigation", Thin-Wall. Struct., 105, 71-80.
- Chen, V.C., Tsui, K.L., Barton, R.R. and Meckesheimer, M. (2006), "A review on design, modeling and applications of computer experiments", IIE Transactions, 38(4), 273-291. https://doi.org/10.1080/07408170500232495
- Crupi, V. and Montanini, R. (2007), "Aluminium foam sandwiches collapse modes under static and dynamic three-point bending", Int. J. Impact Eng., 34(3), 509-521. https://doi.org/10.1016/j.ijimpeng.2005.10.001
- Daniel, I.M., Gdoutos, E.E., Abot, J.L. and Wang, K.A. (2003), "Deformation and failure of composite sandwich structures", J. Thermopl. Compos. Mater., 16(2), 345-355. https://doi.org/10.1177/0892705703016004005
- Daniel, I.M., Gdoutos, E.E., Wang, K.A. and Abot, J.L. (2002), "Failure Modes of Composite Sandwich Beams", Int. J. Damage Mech., 11(4), 309-334. https://doi.org/10.1106/105678902027247
- Das, S. and Mishra, S. (2017), "Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach", J. Environ. Chem. Eng., 5(1), 588-600. https://doi.org/10.1016/j.jece.2016.12.034
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, (2nd Ed.), Cambridge University Press, Cambridge, UK.
- Graciano, C., Martinez, G. and Gutierrez, A. (2012), "Failure mechanism of expanded metal tubes under axial crushing", Thin-Wall. Struct., 51, 20-24. https://doi.org/10.1016/j.tws.2011.11.001
- Graciano, C., Martinez, G. and Smith, D. (2009), "Experimental investigation on the axial collapse of expanded metal tubes", Thin-Wall. Struct., 47(8-9), 953-961. https://doi.org/10.1016/j.tws.2009.02.002
- Hatami, H. and Damghani Nouri, M. (2015), "Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities", Latin Am. J. Solids Struct., 12(10), 1950-1971. https://doi.org/10.1590/1679-78251919
- Hu, Y., Li, W., An, X. and Fan, H. (2016), "Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels", Compos. Sci. Technol., 125, 114-122. https://doi.org/10.1016/j.compscitech.2016.02.003
- Hyun, S., Karlsson, A.M., Torquato, S. and Evans, A.G. (2003), "Simulated properties of Kagome and tetragonal truss core panels", Int. J. Solids Struct., 40(25), 6989-6998. https://doi.org/10.1016/S0020-7683(03)00350-0
- Jahromi, A.G. and Hatami, H. (2017), "Energy absorption performance on multilayer expanded metal tubes under axial impact", Thin-Wall. Struct., 116, 1-11. https://doi.org/10.1016/j.tws.2017.03.005
- Kooistra, G.W. and Wadley, H.N.G. (2007), "Lattice truss structures from expanded metal sheet", Mater. Des., 28(2), 507-514. https://doi.org/10.1016/j.matdes.2005.08.013
- Li, Q.M., Ma, G.W. and Ye, Z.Q. (2006), "An elastic-plastic model on the dynamic response of composite sandwich beams subjected to mass impact", Compos. Struct., 72(1), 1-9. https://doi.org/10.1016/j.compstruct.2004.10.015
- Sheriff, N.M., Gupta, N.K., Velmurugan, R. and Shanmugapriyan, N. (2008), "Optimization of thin conical frusta for impact energy absorption", Thin-Wall. Struct., 46(6), 653-666. https://doi.org/10.1016/j.tws.2007.12.001
- Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2016), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, (4th Edition).
- Najibi, A., Shojaeefard, M.H. and Yeganeh, M. (2016), "Developing and multi-objective optimization of a combined energy absorber structure using polynomial neural networks and evolutionary algorithms", Latin Am. J. Solids Struct., 13(14), 2252-2272.
- Nouri, M.D., Hatami, H. and Jahromi, A.G. (2015), "Experimental and numerical investigation of expanded metal tube absorber under axial impact loading", Struct. Eng. Mech., Int. J., 54(6), 1245-1266. https://doi.org/10.12989/sem.2015.54.6.1245
- Pedersen, C.B.W., Deshpande, V.S. and Fleck, N.A. (2006), "Compressive response of the Y-shaped sandwich core", Eur. J. Mech., A/Solids, 25(1), 125-141. https://doi.org/10.1016/j.euromechsol.2005.06.001
- Smith, D., Graciano, C. and Martinez, G. (2009), Recent Patents on Expanded Metal; Recent Patents on Materials Science, 2, 209-225. https://doi.org/10.2174/1874464810902030209
- Smith, D.J., Graciano, C.A., Teixeira, P., Martinez, G. and Pertuz, A. (2016), "Energy absorption characteristics of coiled expanded metal tubes under axial compression", Latin Am. J. Solids Struct., 13(16), 2845-2860.
- Sun, G., Pang, T., Xu, C., Zheng, G. and Song, J. (2017), "Energy absorption mechanics for variable thickness thin-walled structures", Thin-Wall. Struct., 118, 214-228. https://doi.org/10.1016/j.tws.2017.04.004
- Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S. and Khalid, K. (2013), "Design of thin wall structures for energy absorption applications: Enhancement of crash-worthiness due to axial and oblique impact forces", Thin-Wall. Struct., 71, 7-17. https://doi.org/10.1016/j.tws.2013.04.003
- Teixeira, P., Martinez, G. and Graciano, C. (2016), "Shear response of expanded metal panels", Eng. Struct., 106, 261-272. https://doi.org/10.1016/j.engstruct.2015.10.034
- Vaidya, S., Zhang, L., Maddala, D., Hebert, R., Wright, J.T., Shukla, A. and Kim, J.H. (2015), "Quasi-static response of sandwich steel beams with corrugated cores", Eng. Struct., 97, 80-89. https://doi.org/10.1016/j.engstruct.2015.04.009
- Xiang, X.M., Lu, G. and Wang, Z.H. (2015), "Quasi-static bending behavior of sandwich beams with thin-walled tubes as core", Int. J. Mech. Sci., 103, 55-62. https://doi.org/10.1016/j.ijmecsci.2015.08.028
- Zhu, F., Lu, G., Ruan, D. and Wang, Z. (2010), "Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores", Int. J. Protect. Struct., 1(4), 507-541. https://doi.org/10.1260/2041-4196.1.4.507
Cited by
- Feasibility study of buckling-restrained braces with PM-35 steel core vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.199
- Energy absorption and damage characterization of GFRP laminated and PVC-foam sandwich composites under repeated impacts with reduced energies and quasi-static indentation vol.16, pp.None, 2018, https://doi.org/10.1016/j.cscm.2021.e00844