DOI QR코드

DOI QR Code

초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel

  • Lee, Ik In (Department of Mechanical Engineering, Andong National University) ;
  • Han, Geu Roo (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Teo Ho (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Heuy Dong (Department of Mechanical Engineering, Andong National University)
  • 투고 : 2017.03.09
  • 심사 : 2017.09.14
  • 발행 : 2018.04.01

초록

유체 유동 시스템에서 히스테리시스 현상은 다양한 산업 및 공학 응용 분야에서 발생하며, 최근 이에 대한 많은 연구가 수행되어 왔다. 이러한 현상은 주로 압력비가 일시적으로 변화하는 과정에서 발생하며 초음속 풍동에 영향을 미칠 것으로 예상되나, 이에 대한 연구는 찾아보기 힘들다. 본 연구에서는 초음속 풍동 내부에서 발생하는 히스테리시스 현상을 수치해석으로 조사하였다. 비정상, 축대칭, 압축성 N-S 방정식을 유한 체적법으로 이산화 하였으며, 난류모델은 Spalart-Allmaras을 적용하였다. 본 연구의 결과로 전압의 증감에 따라, 동일한 압력비에서 발생하는 충격파의 위치가 다르게 나타났으며, 이를 통해 초음속 풍동을 효율적으로 작동시킬 수 있는 최적의 압력비를 찾을 수 있음을 알았다.

Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.

키워드

참고문헌

  1. Lee, J.S. and Kim, H.D., "The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 6, pp. 38-44, 2010.
  2. Setoguchi, T., Matsuo, S., Alam, M.A., Nagao, J. and Kim, H.D., "Hysteretic Phenomenon of Shock Wave in a Supersonic Nozzle," Journal of Thermal Science, Vol. 19, No. 6, pp. 526-532, 2010. https://doi.org/10.1007/s11630-010-0419-4
  3. Nam, J.S. and Kim, H.D., "Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle," The Korean Society of Mechanical Engineers, Vol. 16, No. 2, pp. 206-212, 2012.
  4. Spalart, P. and Allmaras, S., "A One-equation Turbulence Model for Aerodynamic Flows." 30th Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., pp. 439, Jan, 1992.
  5. Akatsuka, J. and Nagai, S., "The Effect of Diffuser Geometry on the Starting Pressure Ratio of a Supersonic Wind Tunnel," 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, I.L., U.S.A., AIAA 2010-4344, Jun. 2010.
  6. "On the Design and Contruction of the 1m $\times$ 1m Supersonic Blow-down Wind Tunnel." Technical Report of National Aeronautical Laboratory, NAL-TR29, 1962.
  7. 入門朋子, 佐藤清, and 藤井孝藏. "ISAS 風洞における風洞始動時の衝撃荷重と流れ場." 第38 回流体力學講演會論文集, pp. 147-150, 2006.
  8. "BAE SYSTEMS", retrieved 20 Dec. 2016 from http://www.baesystems.com/ProductsServices/bae_prod_mas_wind_tunnel.html.
  9. "ICAST(Information Center for Aerospace Science and Technology)", retrieved 22 Dec. 2016 from http://www.icast.org.in/Resources/Dwttfi1.pdf.
  10. Watanabe, M., Iijima, H., Sato, M., Nagai, S., Nishijima, H., Kimura, T. and Itabashi, Y. "A Measurement of Turbulent Boundary Layer Thickness at the JAXA 1m $\times$ 1m Supersonic Wind Tunnel," JAXA-SP-04-013, 2005.