DOI QR코드

DOI QR Code

Up-regulation of NHE8 by somatostatin ameliorates the diarrhea symptom in infectious colitis mice model

  • Lei, Xuelian (Department of Gastroenterology, West China Hospital of Sichuan University) ;
  • Cai, Lin (Department of Gastroenterology, West China Hospital of Sichuan University) ;
  • Li, Xiao (Department of Gastroenterology, West China Hospital of Sichuan University) ;
  • Xu, Hua (University of Arizona Health Science Center) ;
  • Geng, Chong (Department of Gastroenterology, West China Hospital of Sichuan University) ;
  • Wang, Chunhui (Department of Gastroenterology, West China Hospital of Sichuan University)
  • Received : 2017.07.28
  • Accepted : 2017.12.14
  • Published : 2018.05.01

Abstract

$Na^+/H^+$ exchangers (NHEs) have been shown to be involved in regulating cell volume and maintaining fluid and electrolyte homeostasis. Pooled evidences have suggested that loss of $Na^+/H^+$ exchanger isoform 8 (NHE8) impairs intestinal mucosa. Whether NHE8 participates in the pathology of infectious colitis is still unknown. Our previous study demonstrated that somatostatin (SST) could stimulate the expression of intestinal NHE8 so as to facilitate $Na^+$ absorption under normal condition. This study further explored whether NHE8 participates in the pathological processes of infectious colitis and the effects of SST on intestinal NHE8 expression in the setting of infectious colitis. Our data showed that NHE8 expression was reduced in Citrobacter rodentium (CR) infected mice. Up-regulation of NHE8 improved diarrhea symptom and mucosal damage induced by CR. In vitro, a similar observation was also seen in Enteropathogenic E. coli (EPEC) infected Caco-2 cells. Seglitide, a SST receptor (SSTR) 2 agonist, partly reversed the inhibiting action of EPEC on NHE8 expression, but SSTR5 agonist (L-817,818) had no effect on the expression of NHE8. Moreover, SST blocked the phosphorylation of p38 in EPEC-infected Caco-2 cells. Taken together, these results suggest that enhancement of intestinal NHE8 expression by SST could ameliorate the symptoms of mice with infectious colitis.

Keywords

References

  1. Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal $Na^{+}$/$H^{+}$ exchange. Annu Rev Physiol. 2005;67:411-443. https://doi.org/10.1146/annurev.physiol.67.031103.153004
  2. Fliegel L. The $Na^{+}$/$H^{+}$ exchanger isoform 1. Int J Biochem Cell Biol. 2005;37:33-37. https://doi.org/10.1016/j.biocel.2004.02.006
  3. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE. Renal and intestinal absorptive defects in mice lacking the NHE3 $Na^{+}$/$H^{+}$ exchanger. Nat Genet. 1998;19:282-285. https://doi.org/10.1038/969
  4. Aronson PS. Ion exchangers mediating NaCl transport in the renal proximal tubule. Cell Biochem Biophys. 2002;36:147-153. https://doi.org/10.1385/CBB:36:2-3:147
  5. Woo AL, Noonan WT, Schultheis PJ, Neumann JC, Manning PA, Lorenz JN, Shull GE. Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol. 2003;284:F1190-1198. https://doi.org/10.1152/ajprenal.00418.2002
  6. Baum M, Martin MG, Booth IW, Holmberg C, Twombley K, Zhang Q, Gattineni J, Moe O. Nucleotide sequence of the $Na^{+}$/$H^{+}$ exchanger-8 in patients with congenital sodium diarrhea. J Pediatr Gastroenterol Nutr. 2011;53:474-477.
  7. Xu H, Chen R, Ghishan FK. Subcloning, localization, and expression of the rat intestinal sodium-hydrogen exchanger isoform 8. Am J Physiol Gastrointest Liver Physiol. 2005;289:G36-41. https://doi.org/10.1152/ajpgi.00552.2004
  8. Xu H, Li J, Chen R, Zhang B, Wang C, King N, Chen H, Ghishan FK. NHE2X3 DKO mice exhibit gender-specific NHE8 compensation. Am J Physiol Gastrointest Liver Physiol. 2011;300:G647-653. https://doi.org/10.1152/ajpgi.00546.2010
  9. Wang A, Li J, Zhao Y, Johansson ME, Xu H, Ghishan FK. Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol. 2015;309:G855-864. https://doi.org/10.1152/ajpgi.00278.2015
  10. Xu H, Li J, Chen H, Wang C, Ghishan FK. NHE8 plays important roles in gastric mucosal protection. Am J Physiol Gastrointest Liver Physiol. 2013;304:G257-261. https://doi.org/10.1152/ajpgi.00433.2012
  11. Liu C, Xu H, Zhang B, Johansson ME, Li J, Hansson GC, Ghishan FK. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. Am J Physiol Cell Physiol. 2013;305:C121-128. https://doi.org/10.1152/ajpcell.00101.2013
  12. Li X, Cai L, Xu H, Geng C, Lu J, Tao L, Sun D, Ghishan FK, Wang C. Somatostatin regulates NHE8 protein expression via the ERK1/2 MAPK pathway in DSS-induced colitis mice. Am J Physiol Gastrointest Liver Physiol. 2016;311:G954-963. https://doi.org/10.1152/ajpgi.00239.2016
  13. Payne CM, Fass R, Bernstein H, Giron J, Bernstein C, Dvorak K, Garewal H. Pathogenesis of diarrhea in the adult: diagnostic challenges and life-threatening conditions. Eur J Gastroenterol Hepatol. 2006;18:1047-1051. https://doi.org/10.1097/01.meg.0000231748.60889.be
  14. Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol. 2014;52:R223-240. https://doi.org/10.1530/JME-14-0011
  15. Pai V, Porter K, Ranalli M. Octreotide acetate is efficacious and safe in children for treating diarrhea due to chemotherapy but not acute graft versus host disease. Pediatr Blood Cancer. 2011;56:45-49. https://doi.org/10.1002/pbc.22838
  16. Szilagyi A, Shrier I. Systematic review: the use of somatostatin or octreotide in refractory diarrhoea. Aliment Pharmacol Ther. 2001;15:1889-1897. https://doi.org/10.1046/j.1365-2036.2001.01114.x
  17. Li X, Wang Q, Xu H, Tao L, Lu J, Cai L, Wang C. Somatostatin regulates tight junction proteins expression in colitis mice. Int J Clin Exp Pathol. 2014;7:2153-2162.
  18. Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Koopmans MP, Buller HA, Dekker J, Einerhand AW. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003;77:13005-13016. https://doi.org/10.1128/JVI.77.24.13005-13016.2003
  19. Hainzl E, Stockinger S, Rauch I, Heider S, Berry D, Lassnig C, Schwab C, Rosebrock F, Milinovich G, Schlederer M, Wagner M, Schleper C, Loy A, Urich T, Kenner L, Han X, Decker T, Strobl B, Muller M. Intestinal epithelial cell tyrosine kinase 2 transduces IL-22 signals to protect from acute colitis. J Immunol. 2015;195:5011-5024. https://doi.org/10.4049/jimmunol.1402565
  20. Wang C, Xu H, Chen H, Li J, Zhang B, Tang C, Ghishan FK. Somatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway. Am J Physiol Cell Physiol. 2011;300:C375-382. https://doi.org/10.1152/ajpcell.00421.2010
  21. Li X, Cai L, Xu H, Geng C, Lu J, Tao L, Sun D, Ghishan FK, Wang C. Somatostatin regulates NHE8 protein expression via the ERK1/2 MAPK pathway in DSS-induced colitis mice. Am J Physiol Gastrointest Liver Physiol. 2016;311:G954-963. https://doi.org/10.1152/ajpgi.00239.2016
  22. Sandle GI. Infective and inflammatory diarrhoea: mechanisms and opportunities for novel therapies. Curr Opin Pharmacol. 2011;11:634-639. https://doi.org/10.1016/j.coph.2011.09.005
  23. Hecht G, Hodges K, Gill RK, Kear F, Tyagi S, Malakooti J, Ramaswamy K, Dudeja PK. Differential regulation of $Na^{+}$/$H^{+}$ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G370-378. https://doi.org/10.1152/ajpgi.00432.2003
  24. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12:612-623. https://doi.org/10.1038/nrmicro3315
  25. O'Hara JR, Skinn AC, MacNaughton WK, Sherman PM, Sharkey KA. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell Microbiol. 2006;8:646-660. https://doi.org/10.1111/j.1462-5822.2005.00657.x
  26. Eliakim R, Karmeli F, Okon E, Rachmilewitz D. Octreotide effectively decreases mucosal damage in experimental colitis. Gut. 1993;34:264-269. https://doi.org/10.1136/gut.34.2.264
  27. van Bergeijk JD, Wilson JH. Somatostatin in inflammatory bowel disease. Mediators Inflamm. 1997;6:303-309. https://doi.org/10.1080/09629359791424
  28. McKeen ES, Feniuk W, Humphrey PP. Somatostatin receptors mediating inhibition of basal and stimulated electrogenic ion transport in rat isolated distal colonic mucosa. Naunyn Schmiedebergs Arch Pharmacol. 1995;352:402-411.
  29. Warhurst G, Barbezat GO, Higgs NB, Reyl-Desmars F, Lewin MJ, Coy DH, Ross I, Grigor MR. Expression of somatostatin receptor genes and their role in inhibiting Cl- secretion in HT-29cl.19A colonocytes. Am J Physiol. 1995;269:G729-736.
  30. Ayiomamitis GD, Notas G, Zaravinos A, Drygiannakis I, Georgiadou M, Sfakianaki O, Mastrodimou N, Thermos K, Kouroumalis E. Effects of octreotide and insulin on colon cancer cellular proliferation and correlation with hTERT activity. Oncoscience. 2014;1:457-467. https://doi.org/10.18632/oncoscience.58
  31. Saksena S, Theegala S, Bansal N, Gill RK, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Mechanisms underlying modulation of monocarboxylate transporter 1 (MCT1) by somatostatin in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009;297:G878-885. https://doi.org/10.1152/ajpgi.00283.2009
  32. Hope N, Butt G, Ross I, Warhurst G, Arn M, Grigor M, Lubcke R, Barbezat GO. Somatostatin enhances cAMP-dependent shortcircuit current in human colon via somatostatin receptor subtype-2. Dig Dis Sci. 2001;46:2499-2503. https://doi.org/10.1023/A:1012392307462
  33. Warhurst G, Higgs NB, Fakhoury H, Warhurst AC, Garde J, Coy DH. Somatostatin receptor subtype 2 mediates somatostatin inhibition of ion secretion in rat distal colon. Gastroenterology. 1996;111:325-333. https://doi.org/10.1053/gast.1996.v111.pm8690197
  34. O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549-563. https://doi.org/10.1038/nrd2070
  35. Chang JP, Habibi HR, Yu Y, Moussavi M, Grey CL, Pemberton JG. Calcium and other signalling pathways in neuroendocrine regulation of somatotroph functions. Cell Calcium. 2012;51:240-252. https://doi.org/10.1016/j.ceca.2011.11.001
  36. Ben-Shlomo A, Pichurin O, Barshop NJ, Wawrowsky KA, Taylor J, Culler MD, Chesnokova V, Liu NA, Melmed S. Selective regulation of somatostatin receptor subtype signaling: evidence for constitutive receptor activation. Mol Endocrinol. 2007;21:2565-2578. https://doi.org/10.1210/me.2007-0081
  37. Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect Immun. 2001;69:1298-1305. https://doi.org/10.1128/IAI.69.3.1298-1305.2001

Cited by

  1. FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins in mice with castor oil-induced diarrhea vol.15, pp.7, 2020, https://doi.org/10.1371/journal.pone.0236511
  2. An indisputable role of NHE8 in mucosal protection vol.319, pp.4, 2020, https://doi.org/10.1152/ajpgi.00246.2020
  3. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases vol.78, pp.24, 2021, https://doi.org/10.1007/s00018-021-04011-5