DOI QR코드

DOI QR Code

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur (Department of Civil Engineering, Munzur University, Aktuluk Campus) ;
  • Gul, Muhammet (Department of Industrial Engineering, Munzur University, Aktuluk Campus)
  • Received : 2017.08.15
  • Accepted : 2018.03.08
  • Published : 2018.04.25

Abstract

The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Keywords

References

  1. Al-Chaar, G., Issa, M. and Sweeney, S. (2002), "Behaviour of masonry-infilled nonductile reinforced concrete frames", J. Struct.Eng. -ASCE, 128(8), 1055-1063. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1055)
  2. Alyuda (2017), Neural networks software, Alyuda Research LLC, Cupertino CA. Available fromhttp://www.alyuda.com/neural-networks-software.htm
  3. Anil, O. and Altin, S. (2007), "An experimental study on reinforced concrete partially infilled frames", Eng. Struct., 29, 449-460. https://doi.org/10.1016/j.engstruct.2006.05.011
  4. Bilgehan, M., Gurel, M.A., Pekgokgoz, R.K. and Kisa, M. (2012), "Buckling load estimation of cracked columns using artificial neural network modeling technique", J. Civil Eng. Manage., 18(4), 568-579. https://doi.org/10.3846/13923730.2012.702988
  5. Calvi, G. and Bolognini, D. (2001), "Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels", J. Earthq. Eng., 5(2), 153-185. https://doi.org/10.1080/13632460109350390
  6. Correia, A.A., Costa, A.C., Candeias, P. and Lourenco, P.B. (2014), "Ensaios sismicos inovadores de porticos com paredes de enchimento em alvenaria", 5as Jornadas Portuguesas de Engenharia de Estruturas (JPEE 2014), 1-16.
  7. D'Ayala, D. and Shi, Y. (2011), "Modeling masonry historic buildings by multi-body dynamics", Int. J. Architect. Heritage, 5(4-5), 483-512. https://doi.org/10.1080/15583058.2011.557138
  8. Dolsek, M. and Fajfar, P. (2002), "Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests", Earthq. Eng. Struct. D., 31(6), 1215-1230. https://doi.org/10.1002/eqe.154
  9. Efendigil, T., Onut, S. and Kahraman, C. (2009), "A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis", Exp. Syst. Appl., 36(3), 6697-6707. https://doi.org/10.1016/j.eswa.2008.08.058
  10. Facchini, L., Betti, M. and Biagini, P. (2014), "Neural network based modal identification of structural systems through output-only measurement", Comput. Struct., 138, 183-194. https://doi.org/10.1016/j.compstruc.2014.01.013
  11. Fahmy, A.S., El-Madawy, M.E.T. and Gobran, Y.A. (2016), "Using artificial neural networks in the design of orthotropic bridge decks", Alexandria Eng. J., 55(4), 3195-3203. https://doi.org/10.1016/j.aej.2016.06.034
  12. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016), "Experimental evaluation of out-of-plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. https://doi.org/10.1016/j.engstruct.2015.12.013
  13. Garzon-Roca, J., Adam, J.M., Sandoval, C. and Roca, P. (2013), "Estimation of the axial behaviour of masonry walls based on artificial neural networks", Comput. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006
  14. Graziotti, F., Tomassetti, U., Penna, A. and Magenes, G. (2016), "Out-of-plane shaking table tests on URM single leaf and cavity walls", Eng. Struct., 125, 455-470. https://doi.org/10.1016/j.engstruct.2016.07.011
  15. Gul, M. and Guneri, A.F. (2015), "Forecasting patient length of stay in an emergency department by artificial neural networks", J. Aeronaut. Sp. Technol. (Havacilik ve Uzay Teknolojileri Dergisi), 2(8), 1-6.
  16. Gul, M. and Guneri, A.F. (2016), "An artificial neural network-based earthquake casualty estimation model for Istanbul city", Nat. Hazards, 84(3), 2163-2178. https://doi.org/10.1007/s11069-016-2541-4
  17. Gul, M. and Guneri, A.F. (2016a), "Planning the future of emergency departments: Forecasting ED patient arrivals by using regression and neural network models", Int. J. Ind. Eng.: Theory, Appl. Pract., 23(2), 137-154.
  18. Guneri, A.F. and Gumus, A.T. (2008), "The usage of artificial neural networks for finite capacity planning", Int. J. Ind. Eng.: Theory, Appl. Pract., 15(1), 16-25.
  19. Guneri, A.F. and Gumus, A.T. (2009), "Artificial neural networks for finite capacity scheduling: a comparative study", Int. J. Ind. Eng.: Theory, Appl. Pract., 15(4), 349-359.
  20. Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review". Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
  21. Hasancebi, O. and Dumlupinar, T. (2013), "Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks", Comput. Struct., 119, 1-11. https://doi.org/10.1016/j.compstruc.2012.12.017
  22. Hashemi, A. and Mosalam, K.M. (2006), "Shake‐ table experiment on reinforced concrete structure containing masonry infill wall", Earthq. Eng. Struct. D., 35(14), 1827-1852. https://doi.org/10.1002/eqe.612
  23. Hola, J. and Schabowicz, K. (2005). "Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-32.
  24. Joshi, S.G., Londhe, S.N. and Kwatra, N. (2014). "Application of artificial neural networks for dynamic analysis of building frames", Comput. Concrete, 13(6), 765-780. https://doi.org/10.12989/cac.2014.13.6.765
  25. Kisi, O. and Kerem Cigizoglu, H. (2007), "Comparison of different ANN techniques in river flow prediction", Civil Eng. Environ. Syst., 24(3), 211-231. https://doi.org/10.1080/10286600600888565
  26. Krose, B., Krose, B., van der Smagt, P. and Smagt, P. (1993), "An introduction to neural networks", CRC Press, London.
  27. Kumar, B. and Samui, P. (2008), "Application of ANN for predicting pore water pressure response in a shake table test", Int. J. Geotech. Eng., 2(2), 153-160. https://doi.org/10.3328/IJGE.2008.02.02.153-160
  28. Lagomarsino, S. (2015), "Seismic assessment of rocking masonry structures", Bull. Earthq. Eng., 13(1), 97-128. https://doi.org/10.1007/s10518-014-9609-x
  29. Lee, S.C. and Han, S.W. (2002), "Neural-network-based models for generating artificial earthquakes and response spectra", Comput. Struct., 80(20), 1627-1638 https://doi.org/10.1016/S0045-7949(02)00112-8
  30. Lourenco, P.B., Leite, J.M., Paulo Pereira, M.F., Campos-Costa, A., Candeias, P.X. and Mendes, N. (2016), "Shaking table testing for masonry infill walls: unreinforced versus reinforced solutions", Earthq. Eng. Struct. D., 45(14), 2241-2260. https://doi.org/10.1002/eqe.2756
  31. Mendes, N. (2012), "Seismic assessment of ancient masonry buildings: shaking table tests and numerical analysis", PhD Thesis, University of Minho, Guimaraes, Portugal.
  32. Misir, I.S., Ozcelik, O. and Kahraman, S. (2015), "The Behaviour of double-whyte hollow clay brick walls under bidirectional loads in R/C frame", Teknik Dergi, 26(3), 7139-7165.
  33. Misir, I.S., Ozcelik, O., Girgin, S.C. and Yucel, U. (2016), "The behavior of infill walls in RC frames under combined bidirectional loading", J. Earthq. Eng., 20(4), 559-586. https://doi.org/10.1080/13632469.2015.1104748
  34. Misir, S., Ozcelik, O., Girgin, S.C. and Kahraman, S. (2012), "Experimental work on seismic behavior of various types of masonry infilled RC frames", Struct. Eng. Mech., 44(6), 763-774. https://doi.org/10.12989/sem.2012.44.6.763
  35. Mosalam, K. and Gunay, M.S. (2015), "Progressive collapse analysis of RC frames with URM infill walls considering inplane/out-of-plane interaction", Earthq. Spectra, 31(2), 921-943. https://doi.org/10.1193/062113EQS165M
  36. Onat, O. (2015), "Investigation of seismic behaviour of infill wall surrounded by reinforced concrete frame", Joint PhD Thesis, Yildiz Technical University Istanbul Turkey & Minho University, Guimaraes Portugal.
  37. Onat, O., Lourenco, P.B. and Kocak, A. (2015), "Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table", Struct. Eng. Mech., 55(5), 1037-1053. https://doi.org/10.12989/sem.2015.55.5.1037
  38. Onat, O., Lourenco, P.B. and Kocak, A. (2016), "Nonlinear analysis of RC structure with massive infill wall exposed to shake table", Earthq. Struct., 10(4), 811-828. https://doi.org/10.12989/eas.2016.10.4.811
  39. Pereira, M.F.P. (2013), Avaliacao do desempenho das envolventes dos edifícios face a accao dos sismos (in Portuguese). Department of Civil Engineering, University of Minho. PhD.
  40. Pujol, S. and Fick, D. (2010), "The test of a full-scale three-story RC structure with masonry infill walls", Eng. Struct., 32(10), 3112-3121. https://doi.org/10.1016/j.engstruct.2010.05.030
  41. Rizzo, P. and Lanza, D.S. (2006), "Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring", Smart Struct. Syst., 2(3), 253-274. https://doi.org/10.12989/sss.2006.2.3.253
  42. Sakla, S.S. and Ashour, A.F. (2005), "Prediction of tensile capacity of single adhesive anchors using neural networks", Comput. Struct., 83(21), 1792-1803. https://doi.org/10.1016/j.compstruc.2005.02.008
  43. Shan, S., Li, S., Xu, S. and Xie, L. (2016), "Experimental study on the progressive collapse performance of RC frames with infill walls", Eng. Struct., 111, 80-92. https://doi.org/10.1016/j.engstruct.2015.12.010
  44. Shawa, O.A., Felice, G., Mauro, A. and Sorrentino, L. (2012), "Out-of-plane seismic behaviour of rocking masonry walls", Earthq. Eng. Struct. D., 41(5), 949-968. https://doi.org/10.1002/eqe.1168
  45. Shi, Y.N. (2016), "Dynamic behaviour of masonry structures", PhD dissertation, University of Bath, UK.
  46. Shing, P.B. and Mehrabi, A.B. (2002), "Behaviour and analysis of masonry-infilled frames", Prog. Struct. Eng. Mater., 4(3), 320-331. https://doi.org/10.1002/pse.122
  47. Sipos, T.K., Sigmund, V. and Hadzima-Nyarko, M. (2013), "Earthquake performance of infilled frames using neural networks and experimental database", Eng. Struct., 51, 113-127. https://doi.org/10.1016/j.engstruct.2012.12.038
  48. Somoza, E. and Somoza, J.R. (1993), "A neural-network approach to predicting admission decisions in a psychiatric emergency room", Medical Decis. Making, 13(4), 273-280. https://doi.org/10.1177/0272989X9301300402
  49. Stavridis, A., Koutromanos, I. and Shing, P.B. (2012), "Shake-table tests of a three-storey reinforced concrete frame with masonry infill walls", Earthq. Eng. Struct. D., 41, 1089-1108. https://doi.org/10.1002/eqe.1174
  50. Topcu, I.B., Boga, A.R. and Hocaoglu, F.O. (2009), "Modeling corrosion currents of reinforced concrete using ANN", Autom. Constr., 18(2), 145-152. https://doi.org/10.1016/j.autcon.2008.07.004
  51. Tu, Y.H., Chuang, T.H., Liu, P.M. and Yang, Y.S. (2010), "Out-of-plane shaking table tests on unreinforced masonry panels in RC frames", Eng. Struct., 32(12), 3925-3935. https://doi.org/10.1016/j.engstruct.2010.08.030
  52. Vaculik, J., and Griffith, M.C. (2017), "Out-of-plane shaketable testing of unreinforced masonry walls in two-way bending", Bull. Earthq. Eng., 1-38.
  53. Varela-Rivera, J.L., Navarrete-Macias, D., Fernandez-Baqueiro, L., E. and Moreno, E.I. (2011), "Out-of-plane behaviour of confined masonry walls", Eng. Struct., 33, 1734-1741. https://doi.org/10.1016/j.engstruct.2011.02.012
  54. Varela-Rivera, J., Polanco-May, M., Fernandez-Baqueiro, L. and Moreno, E.I. (2012), "Confined masonry walls subjected to combined axial loads and out-of-plane uniform pressures", Can. J. Civil Eng., 39, 439-447. https://doi.org/10.1139/l2012-021
  55. Yon, B., Sayin, E. and Onat, O. (2017), Earthquakes and Structural Damages. In Earthquakes-Tectonics, Hazard and Risk Mitigation. InTech book edited by Taher Zouaghi, ISBN 978-953-51-2886-1, Print ISBN 978-953-51-2885-4; DOI: 10.5772/65425.

Cited by

  1. Employing TLBO and SCE for optimal prediction of the compressive strength of concrete vol.26, pp.6, 2018, https://doi.org/10.12989/sss.2020.26.6.753