References
- Al-Chaar, G., Issa, M. and Sweeney, S. (2002), "Behaviour of masonry-infilled nonductile reinforced concrete frames", J. Struct.Eng. -ASCE, 128(8), 1055-1063. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1055)
- Alyuda (2017), Neural networks software, Alyuda Research LLC, Cupertino CA. Available fromhttp://www.alyuda.com/neural-networks-software.htm
- Anil, O. and Altin, S. (2007), "An experimental study on reinforced concrete partially infilled frames", Eng. Struct., 29, 449-460. https://doi.org/10.1016/j.engstruct.2006.05.011
- Bilgehan, M., Gurel, M.A., Pekgokgoz, R.K. and Kisa, M. (2012), "Buckling load estimation of cracked columns using artificial neural network modeling technique", J. Civil Eng. Manage., 18(4), 568-579. https://doi.org/10.3846/13923730.2012.702988
- Calvi, G. and Bolognini, D. (2001), "Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels", J. Earthq. Eng., 5(2), 153-185. https://doi.org/10.1080/13632460109350390
- Correia, A.A., Costa, A.C., Candeias, P. and Lourenco, P.B. (2014), "Ensaios sismicos inovadores de porticos com paredes de enchimento em alvenaria", 5as Jornadas Portuguesas de Engenharia de Estruturas (JPEE 2014), 1-16.
- D'Ayala, D. and Shi, Y. (2011), "Modeling masonry historic buildings by multi-body dynamics", Int. J. Architect. Heritage, 5(4-5), 483-512. https://doi.org/10.1080/15583058.2011.557138
- Dolsek, M. and Fajfar, P. (2002), "Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests", Earthq. Eng. Struct. D., 31(6), 1215-1230. https://doi.org/10.1002/eqe.154
- Efendigil, T., Onut, S. and Kahraman, C. (2009), "A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis", Exp. Syst. Appl., 36(3), 6697-6707. https://doi.org/10.1016/j.eswa.2008.08.058
- Facchini, L., Betti, M. and Biagini, P. (2014), "Neural network based modal identification of structural systems through output-only measurement", Comput. Struct., 138, 183-194. https://doi.org/10.1016/j.compstruc.2014.01.013
- Fahmy, A.S., El-Madawy, M.E.T. and Gobran, Y.A. (2016), "Using artificial neural networks in the design of orthotropic bridge decks", Alexandria Eng. J., 55(4), 3195-3203. https://doi.org/10.1016/j.aej.2016.06.034
- Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016), "Experimental evaluation of out-of-plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. https://doi.org/10.1016/j.engstruct.2015.12.013
- Garzon-Roca, J., Adam, J.M., Sandoval, C. and Roca, P. (2013), "Estimation of the axial behaviour of masonry walls based on artificial neural networks", Comput. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006
- Graziotti, F., Tomassetti, U., Penna, A. and Magenes, G. (2016), "Out-of-plane shaking table tests on URM single leaf and cavity walls", Eng. Struct., 125, 455-470. https://doi.org/10.1016/j.engstruct.2016.07.011
- Gul, M. and Guneri, A.F. (2015), "Forecasting patient length of stay in an emergency department by artificial neural networks", J. Aeronaut. Sp. Technol. (Havacilik ve Uzay Teknolojileri Dergisi), 2(8), 1-6.
- Gul, M. and Guneri, A.F. (2016), "An artificial neural network-based earthquake casualty estimation model for Istanbul city", Nat. Hazards, 84(3), 2163-2178. https://doi.org/10.1007/s11069-016-2541-4
- Gul, M. and Guneri, A.F. (2016a), "Planning the future of emergency departments: Forecasting ED patient arrivals by using regression and neural network models", Int. J. Ind. Eng.: Theory, Appl. Pract., 23(2), 137-154.
- Guneri, A.F. and Gumus, A.T. (2008), "The usage of artificial neural networks for finite capacity planning", Int. J. Ind. Eng.: Theory, Appl. Pract., 15(1), 16-25.
- Guneri, A.F. and Gumus, A.T. (2009), "Artificial neural networks for finite capacity scheduling: a comparative study", Int. J. Ind. Eng.: Theory, Appl. Pract., 15(4), 349-359.
- Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review". Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
- Hasancebi, O. and Dumlupinar, T. (2013), "Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks", Comput. Struct., 119, 1-11. https://doi.org/10.1016/j.compstruc.2012.12.017
- Hashemi, A. and Mosalam, K.M. (2006), "Shake‐ table experiment on reinforced concrete structure containing masonry infill wall", Earthq. Eng. Struct. D., 35(14), 1827-1852. https://doi.org/10.1002/eqe.612
- Hola, J. and Schabowicz, K. (2005). "Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-32.
- Joshi, S.G., Londhe, S.N. and Kwatra, N. (2014). "Application of artificial neural networks for dynamic analysis of building frames", Comput. Concrete, 13(6), 765-780. https://doi.org/10.12989/cac.2014.13.6.765
- Kisi, O. and Kerem Cigizoglu, H. (2007), "Comparison of different ANN techniques in river flow prediction", Civil Eng. Environ. Syst., 24(3), 211-231. https://doi.org/10.1080/10286600600888565
- Krose, B., Krose, B., van der Smagt, P. and Smagt, P. (1993), "An introduction to neural networks", CRC Press, London.
- Kumar, B. and Samui, P. (2008), "Application of ANN for predicting pore water pressure response in a shake table test", Int. J. Geotech. Eng., 2(2), 153-160. https://doi.org/10.3328/IJGE.2008.02.02.153-160
- Lagomarsino, S. (2015), "Seismic assessment of rocking masonry structures", Bull. Earthq. Eng., 13(1), 97-128. https://doi.org/10.1007/s10518-014-9609-x
- Lee, S.C. and Han, S.W. (2002), "Neural-network-based models for generating artificial earthquakes and response spectra", Comput. Struct., 80(20), 1627-1638 https://doi.org/10.1016/S0045-7949(02)00112-8
- Lourenco, P.B., Leite, J.M., Paulo Pereira, M.F., Campos-Costa, A., Candeias, P.X. and Mendes, N. (2016), "Shaking table testing for masonry infill walls: unreinforced versus reinforced solutions", Earthq. Eng. Struct. D., 45(14), 2241-2260. https://doi.org/10.1002/eqe.2756
- Mendes, N. (2012), "Seismic assessment of ancient masonry buildings: shaking table tests and numerical analysis", PhD Thesis, University of Minho, Guimaraes, Portugal.
- Misir, I.S., Ozcelik, O. and Kahraman, S. (2015), "The Behaviour of double-whyte hollow clay brick walls under bidirectional loads in R/C frame", Teknik Dergi, 26(3), 7139-7165.
- Misir, I.S., Ozcelik, O., Girgin, S.C. and Yucel, U. (2016), "The behavior of infill walls in RC frames under combined bidirectional loading", J. Earthq. Eng., 20(4), 559-586. https://doi.org/10.1080/13632469.2015.1104748
- Misir, S., Ozcelik, O., Girgin, S.C. and Kahraman, S. (2012), "Experimental work on seismic behavior of various types of masonry infilled RC frames", Struct. Eng. Mech., 44(6), 763-774. https://doi.org/10.12989/sem.2012.44.6.763
- Mosalam, K. and Gunay, M.S. (2015), "Progressive collapse analysis of RC frames with URM infill walls considering inplane/out-of-plane interaction", Earthq. Spectra, 31(2), 921-943. https://doi.org/10.1193/062113EQS165M
- Onat, O. (2015), "Investigation of seismic behaviour of infill wall surrounded by reinforced concrete frame", Joint PhD Thesis, Yildiz Technical University Istanbul Turkey & Minho University, Guimaraes Portugal.
- Onat, O., Lourenco, P.B. and Kocak, A. (2015), "Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table", Struct. Eng. Mech., 55(5), 1037-1053. https://doi.org/10.12989/sem.2015.55.5.1037
- Onat, O., Lourenco, P.B. and Kocak, A. (2016), "Nonlinear analysis of RC structure with massive infill wall exposed to shake table", Earthq. Struct., 10(4), 811-828. https://doi.org/10.12989/eas.2016.10.4.811
- Pereira, M.F.P. (2013), Avaliacao do desempenho das envolventes dos edifícios face a accao dos sismos (in Portuguese). Department of Civil Engineering, University of Minho. PhD.
- Pujol, S. and Fick, D. (2010), "The test of a full-scale three-story RC structure with masonry infill walls", Eng. Struct., 32(10), 3112-3121. https://doi.org/10.1016/j.engstruct.2010.05.030
- Rizzo, P. and Lanza, D.S. (2006), "Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring", Smart Struct. Syst., 2(3), 253-274. https://doi.org/10.12989/sss.2006.2.3.253
- Sakla, S.S. and Ashour, A.F. (2005), "Prediction of tensile capacity of single adhesive anchors using neural networks", Comput. Struct., 83(21), 1792-1803. https://doi.org/10.1016/j.compstruc.2005.02.008
- Shan, S., Li, S., Xu, S. and Xie, L. (2016), "Experimental study on the progressive collapse performance of RC frames with infill walls", Eng. Struct., 111, 80-92. https://doi.org/10.1016/j.engstruct.2015.12.010
- Shawa, O.A., Felice, G., Mauro, A. and Sorrentino, L. (2012), "Out-of-plane seismic behaviour of rocking masonry walls", Earthq. Eng. Struct. D., 41(5), 949-968. https://doi.org/10.1002/eqe.1168
- Shi, Y.N. (2016), "Dynamic behaviour of masonry structures", PhD dissertation, University of Bath, UK.
- Shing, P.B. and Mehrabi, A.B. (2002), "Behaviour and analysis of masonry-infilled frames", Prog. Struct. Eng. Mater., 4(3), 320-331. https://doi.org/10.1002/pse.122
- Sipos, T.K., Sigmund, V. and Hadzima-Nyarko, M. (2013), "Earthquake performance of infilled frames using neural networks and experimental database", Eng. Struct., 51, 113-127. https://doi.org/10.1016/j.engstruct.2012.12.038
- Somoza, E. and Somoza, J.R. (1993), "A neural-network approach to predicting admission decisions in a psychiatric emergency room", Medical Decis. Making, 13(4), 273-280. https://doi.org/10.1177/0272989X9301300402
- Stavridis, A., Koutromanos, I. and Shing, P.B. (2012), "Shake-table tests of a three-storey reinforced concrete frame with masonry infill walls", Earthq. Eng. Struct. D., 41, 1089-1108. https://doi.org/10.1002/eqe.1174
- Topcu, I.B., Boga, A.R. and Hocaoglu, F.O. (2009), "Modeling corrosion currents of reinforced concrete using ANN", Autom. Constr., 18(2), 145-152. https://doi.org/10.1016/j.autcon.2008.07.004
- Tu, Y.H., Chuang, T.H., Liu, P.M. and Yang, Y.S. (2010), "Out-of-plane shaking table tests on unreinforced masonry panels in RC frames", Eng. Struct., 32(12), 3925-3935. https://doi.org/10.1016/j.engstruct.2010.08.030
- Vaculik, J., and Griffith, M.C. (2017), "Out-of-plane shaketable testing of unreinforced masonry walls in two-way bending", Bull. Earthq. Eng., 1-38.
- Varela-Rivera, J.L., Navarrete-Macias, D., Fernandez-Baqueiro, L., E. and Moreno, E.I. (2011), "Out-of-plane behaviour of confined masonry walls", Eng. Struct., 33, 1734-1741. https://doi.org/10.1016/j.engstruct.2011.02.012
- Varela-Rivera, J., Polanco-May, M., Fernandez-Baqueiro, L. and Moreno, E.I. (2012), "Confined masonry walls subjected to combined axial loads and out-of-plane uniform pressures", Can. J. Civil Eng., 39, 439-447. https://doi.org/10.1139/l2012-021
- Yon, B., Sayin, E. and Onat, O. (2017), Earthquakes and Structural Damages. In Earthquakes-Tectonics, Hazard and Risk Mitigation. InTech book edited by Taher Zouaghi, ISBN 978-953-51-2886-1, Print ISBN 978-953-51-2885-4; DOI: 10.5772/65425.
Cited by
- Employing TLBO and SCE for optimal prediction of the compressive strength of concrete vol.26, pp.6, 2018, https://doi.org/10.12989/sss.2020.26.6.753