DOI QR코드

DOI QR Code

Semi-analytical solution of horizontally composite curved I-beam with partial slip

  • Received : 2017.03.27
  • Accepted : 2017.08.04
  • Published : 2018.04.10

Abstract

This paper presents a semi-analytical solution of simply supported horizontally composite curved I-beam by trigonometric series. The flexibility of the interlayer connectors between layers both in the tangential direction and in the radial direction is taken into account in the proposed formulation. The governing differential equations and the boundary conditions are established by applying the variational approach, which are solved by applying the Fourier series expansion method. The accuracy and efficiency of the proposed formulation are validated by comparing its results with both experimental results reported in the literature and FEM results.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Arefi, M. and Zenkour, A.M. (2017), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart Struct. Syst., Int. J., 19(6), 695-703. DOI: 10.12989/sss.2017.19.6.695
  2. Campi, F. and Monetto, I. (2013), "Analytical solutions of twolayer beams with interlayer slip and bi-linear interface law", Int. J. Solids Struct., 50(5), 687-698. https://doi.org/10.1016/j.ijsolstr.2012.10.032
  3. Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012), "Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory", Int. J. Mech. Sci., 59(1), 115-125. https://doi.org/10.1016/j.ijmecsci.2012.03.012
  4. Dall'Asta, A. (2001), "Composite beams with weak shear connection", Int. J. Solids Struct., 38(38), 5605-5624. https://doi.org/10.1016/S0020-7683(00)00369-3
  5. Erkmen, R.E. and Bradford, M.A. (2009), "Nonlinear elastic analysis of composite beams curved in-plan", Eng. Struct., 31(7), 1613-1624. https://doi.org/10.1016/j.engstruct.2009.02.016
  6. Gimena, L., Gimena, F.N. and Gonzaga, P. (2008), "Structural analysis of a curved beam element defined in global coordinates", Eng. Struct., 30(11), 3355-3364. https://doi.org/10.1016/j.engstruct.2008.05.011
  7. Girhammar, U.A. and Gopu, V.K.A. (1993), "Composite beamcolumns with interlayer slip-exact analysis", J. Struct. Eng. - ASCE, 199(4), 1265-1282.
  8. Giussani, F. and Mola, F. (2006), "Service-stage analysis of curved composite steel_concrete bridge beams", J. Struct. Eng. - ASCE, 132(12), 1928-1939. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1928)
  9. Kim, N.I. (2009), "Dynamic stiffness matrix of composite box beams", Steel Compos. Struct., Int. J., 9(5), 473-497. https://doi.org/10.12989/scs.2009.9.5.473
  10. Kim, M.Y., Kim, S.B. and Kim, N.I. (2005a), "Spatial stability of shear deformable curved beams with non-symmetric thin walled sections, I: Stability formulation and closed form solutions", Comput. Struct., 83(31-32), 2525-2541. https://doi.org/10.1016/j.compstruc.2005.07.004
  11. Kim, M.Y., Kim, S.B. and Kim, N.I. (2005b), "Spatial stability of shear deformable curved beams with non-symmetric thin walled sections, II: F.E. Solutions and parametric study", Comput. Struct., 83(31-32), 2542-2558. https://doi.org/10.1016/j.compstruc.2005.07.003
  12. Liu, H.B., Liu, W.H. and Zhang, Y.L. (2005),"Calculation analysis of shearing slip for steel-concrete composite beam under concentrated load", Appl. Math. Mech.-Engl. Ed., 26(6), 735-740. https://doi.org/10.1007/BF02465424
  13. Liu, X., Erkmen, R.E. and Bradford, M.A. (2012), "Creep and shrinkage analysis of curved composite beams with partial interaction", Int. J. Mech. Sci., 58(1), 57-68. https://doi.org/10.1016/j.ijmecsci.2012.03.001
  14. Liu, H.L., Zhu, X.F. and Yang, D.X. (2016), "Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams", Struct. Eng. Mech., Int. J., 59(3), 503-526. https://doi.org/10.12989/sem.2016.59.3.503
  15. Majdi, Y., Hsu, C.T.T. and Zarei, M. (2014), "Finite element analysis of new composite floors having cold-formed steel and concrete slab", Eng. Struct., 77(15), 65-83. https://doi.org/10.1016/j.engstruct.2014.07.030
  16. Palani, G.S. and Rajesekan, S. (1992), "Finite element analysis of thin-walled curved beams made of composites", J. Struct. Eng. - ASCE, 118(8), 2039-2062. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2039)
  17. Pi, Y.L., Bradford, M.A. and Uy, B. (2006), "Second order nonlinear inelastic analysis of composite steel-concrete members. I: Theory", J. Struct. Eng. - ASCE, 132(5), 751-761. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(751)
  18. Prokic, A., Lukic, D. and Ladjinovic, D. (2014), "Automatic analysis of thin-walled laminated composite sections", Steel Compos. Struct., Int. J., 16(3), 233-252. https://doi.org/10.12989/scs.2014.16.3.233
  19. Qin, X.X., Liu, H.B., Wu, C.L. and Gu, Z.W. (2016), "A trigonometric analytical solution of simply supported horizontally curved composite I-beam considering tangential slips", Math. Problem. Eng., 1-12.
  20. Ranzi, G., Bradford, M.A. and Uy, B. (2003), "A general method of analysis of composite beams with partial interaction", Steel Compos. Struct., Int. J., 3(3), 169-184. https://doi.org/10.12989/scs.2003.3.3.169
  21. Santos, H.A.F.A. and Silberschmidt, V.V. (2014), "Hybrid equilibrium finite element formulation for composite beams with partial interaction", Comput. Struct., 108(1), 646-656. https://doi.org/10.1016/j.compstruct.2013.09.062
  22. Tan, E.L. and Uy, B. (2009), "Experimental study on curved composite beams subjected to combined flexure and torsion", J. Constr. Steel Res., 65(4), 784-793. https://doi.org/10.1016/j.jcsr.2008.10.006
  23. Tan, E.L. and Uy, B. (2011), "Nonlinear analysis of composite beams subjected to combined flexure and torsion", J. Constr. Steel Res., 67(5), 760-799.
  24. Thevendran, V., Chen, S., Shanmugam, N.E. and Liew, J.Y.R. (1999), "Nonlinear analysis of steel-concrete composite beams curved in plan", Finite Elem. Anal. Des., 32(3), 125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
  25. Thevendran, V., Shanmugam, N.E., Chen, S. and Liew, J.Y.R. (2000), "Experimental study on steel_concrete composite beams curved in plan", Eng. Struct., 22(8), 877-889. https://doi.org/10.1016/S0141-0296(99)00046-2
  26. Topkaya, C., Williamson, E.B. and Frank, K.H. (2004), "Behavior of curved steel trapezoidal box-girders during construction", Eng. Struct., 26(6), 721-733. https://doi.org/10.1016/j.engstruct.2003.12.012
  27. Vlasov, V.Z. (1961), Thin walled elastic beams, Israel Program for Scientific Translation, Jerusalem.
  28. Wilson, J.F., Wang, Y. and Threlfall, I. (1999), "Responses of nearoptimal, continuous horizontally curved beams to transit loads" J. Sound Vib., 222(4), 565-575. https://doi.org/10.1006/jsvi.1998.2039
  29. Yu, A.M., Yang, J.W., Nie, G.H. and Yang, X.G. (2011), "An improved model for naturally curved and twisted composite beams with closed thin-walled sections", Comput. Struct., 93(9), 2322-2329. https://doi.org/10.1016/j.compstruct.2011.03.020
  30. Yu, A.M., Yang, X.G. and Nie, G.H. (2006), "Generalized coordinate for warping of naturally curved and twisted beams with general cross-sectional shapes", Int. J. Solids Struct., 43(10), 2853-2867. https://doi.org/10.1016/j.ijsolstr.2005.05.045
  31. Zona, A. and Ranzi, G. (2011), "Finite element models for nonlinear analysis of steel-concrete composite beams with partial interaction in combined bending and shear", Finite Elem. Anal. Des., 47(2), 98-118. https://doi.org/10.1016/j.finel.2010.09.006

Cited by

  1. Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4094753