DOI QR코드

DOI QR Code

The Effect of Alisma canaliculatum and Polyporus umbellatus Extracts on Adipogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Stem cells

택사/저령 추출물이 사람 중간엽 줄기세포의 지방세포 분화에 미치는 영향

  • Yu, Sung-ryul (Dept. of Clinical Laboratory Science, Se-Myung University) ;
  • Kim, Si-hyun (Dept. of Clinical Laboratory Science, Se-Myung University) ;
  • Shin, Seon-mi (Dept. of Internal Medicine, College of Oriental Medicine, Se-Myung University)
  • 유성률 (세명대학교 임상병리학과) ;
  • 김시현 (세명대학교 임상병리학과) ;
  • 신선미 (세명대학교 한의과대학 내과학교실)
  • Received : 2018.11.28
  • Accepted : 2019.01.02
  • Published : 2018.12.30

Abstract

Objective: This study investigated the effect of purified medical herb extracts such as Alisma canaliculatum and Polyporus umbellatuson adipogenic differentiation of human bone marrow derived mesenchymal stromal stem cells (hBMSCs). Methods: Two different medical herb were extracted using hot distilled water. The optimal concentration of extracts were fixed at 100 ng/ml by means of cell viability and cytotoxic assay. To test the adipogenic differentiation ability of extracts, we induced the adipogenesis of hBMSCs for 21 days. At day 5, the cell was harvested to check mRNA and protein expression level of adipogenic related factors. The efficacy of lipid droplet formation was evaluated using the oil-red O staining method at days 21. Results: Two different medical herb extracts have no toxicity on hBMSCs. And two different medical herb extracts significantly decreased formation of lipid droplet compared with control groups in hBMSCs. The A. canaliculatum extract group showed the lowest mRNA and protein expression level of adipossgenic related transcription factors. This data suggests that extract of A. canaliculatum and P. umbellata decrease the adipogenic differentiation of hBMSCs. Conclusions: Our findings indicate that water-extract of A. canaliculatum and P. umbellata will be useful therapeutic reagents for prevention of obesity related disease such as diabetes, hyperlipidemia, coronary artery disease, and osteoporosis.

Keywords

References

  1. Martin DR. Cox NR. Hathcock TL. Niemeyer GP. Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 2001;30(8):879-86. https://doi.org/10.1016/S0301-472X(02)00864-0
  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7. https://doi.org/10.1126/science.284.5411.143
  3. Jung HS, Lee YJ, Kim YH, Paik SI, Kim JW, Lee JW. Peroxisome proliferator-activated receptor gamma/singal transducers and activators of transcription 5a pathway plays a key factor in adipogenesis of human bone marrow-derived stromal cells and 3T3-L1 preadipocytes. Stem Cells Dev 2012;21(3):465-75. https://doi.org/10.1089/scd.2010.0591
  4. Duque G. Bone and fat connection in aging bone. Curr Opin Rheumatol 2008;20(4):429-34. https://doi.org/10.1097/BOR.0b013e3283025e9c
  5. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 2004;3(6):379-89. https://doi.org/10.1111/j.1474-9728.2004.00127.x
  6. Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 2005;22(2):279-85. https://doi.org/10.1002/jmri.20367
  7. Ferrari S, Reginster JY, Brandi ML, Kanis JA, Devogelaer JP, Kaufman JM, et al. Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture. Arch Osteoporos 2016;11(1):37-48. https://doi.org/10.1007/s11657-016-0292-1
  8. Magaziner J, Simonsick EM, Kashner TM, Hebel JR, Kenzora JE. Predictors of functional recovery one year following hospital discharge for hip fracture: a prospective study. J Gerontol 1990;45:M101-M7. https://doi.org/10.1093/geronj/45.3.M101
  9. Kawai M. Devlin MJ. Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol 2009;5(7):365-72. https://doi.org/10.1038/nrrheum.2009.102
  10. Pei L. Tontonoz P. Fat's loss is bone's gain. J Clin Invest2004;113(6):805-6. https://doi.org/10.1172/JCI21311
  11. World Health Organization (WHO). Obesity and overweight in Media centre. 2011.
  12. Pourali P, Yahyaei B. (2018). Wound healing property of a gel prepared by the combination of Pseudomonas aeruginosa alginate and Alhagi maurorum aqueous extract in rats. Dermatol Ther 2018:e12779.
  13. Yu SR, Shin SM. Effects of Carthamus Tinctorius Extract on Adipogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Stem Cells. Korean J Orient Int Med 2017;38(1):1-9.
  14. Yu SR. The Effect of Medical Herb Extract on Osteogenic Differentiation in MC3T3-E1 Cells. 한국보건기초의학회지 2015;9(1):17-22.
  15. Diel I, Bergner R, Grotz K. Adverse effects of bisphosphonates: current issues. J Support Oncol 2007;5(10):475-82.
  16. McClung M, Harris S, Miller P, Bauer D, Davison K, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 2013;126(1):13-20. https://doi.org/10.1016/j.amjmed.2012.06.023
  17. Chung HJ, Kim WK, Oh J, Kim MR, Shin JS, Lee J, et al. Anti-Osteoporotic Activity of Harpagoside by Upregulation of the BMP2 and Wnt Signaling Pathways in Osteoblasts and Suppression of Differentiation in Osteoclasts. J Nat Prod2017;24(80):434-42.
  18. Seo BI, Jeong GY. The easily understanding herbology. Kyungsan: publishing department of Daegu Haany university; 2012, p. 185-6.
  19. Jeong HS. Efficacy of Alismatis Orientale Rhizoma on Obesity induced by High Fat Diet. Kor J Herbology2013;28(3):95-106. https://doi.org/10.6116/kjh.2013.28.3.95
  20. Lu W, Adachi I, Kano K, Yasuta A, Toriizuka K, Ueno M, et al. Pletelet aggregation potentiators from cho-rei. Chem Pharm Bull 1985;33(11):5083-7. https://doi.org/10.1248/cpb.33.5083
  21. Sato K, Osawa M, Suzuki Y, Oikawa S. Difference in fruiting capability of stocks in Grifola Frondosa and its allied species. Trans Mycol Soc Japan 1984;25:205-9.
  22. Miyazaki T, Oikawa N, Yadomae T, Yamada H, Yamada Y. Relationship between the chemical structure and antitumor activity of glucans prepared from Grifolla umbellata. Carbohydrate Research1979;69(1):165-70. https://doi.org/10.1016/S0008-6215(00)85761-4
  23. Ueno Y, Okamoto Y, Yamauchi R, Kato K. An antitumor activity of the alkali-soluble polysaccharide (and its derivatives) obtained from the sclerotia of Grifora umbellata. Carbohydrate Research1982;101(1):160-7. https://doi.org/10.1016/S0008-6215(00)80808-3
  24. Zhang Y, Liu Y, Yan SC. Effect of Polyporus umbellatus polysaccahride on function of macrophages in the peritoneal cavities of mice with lesions. Cheih Ho Tsa Chih 1991;11(4):225-6.
  25. May L, Yun SC. Therapeutic investigation of Polyporusumbellatus polysaccahride on the children with pure immunity. J Traditional Chinese Medicine (China1)990;3:168-9.
  26. Chang YF, Liu YY, Yun SC. Effect of Polyporus umbellatus polysaccahrides on macrophages of liver damaged mice. Intergrated J Chinese and Western Medicine (China1)991;11:225-6.
  27. Xiong LL. Therapeutic effect of combined therapy of Salvia miltiorrhizae and Polyporus umbellatus polysaccharide in the treatment of chronic hepatitis B. Cheih Ho Tsa Chih 1993;13(9):516-7.
  28. You JS, Hau DM, Chen KT, Huang HF. Combined effects fo chulling (Polyporus umbellatus) extract and mitomycin C on experimental liver cancer. Am J Chin Med 1994;22(1):19-28. https://doi.org/10.1142/S0192415X94000048
  29. Ishida H, Inaoka Y, Shibatani J, Fukushima M, Tsuji K. Studies of the active substances in herbs used for hair treatment II Isolation of hair regrowth substances acerosyringone and polyporusterone A and B from Polyporus umbellatus fries. Biol Pharm Bull 1999;22(1):1189-92. https://doi.org/10.1248/bpb.22.1189
  30. Ishida H. Studies of active substances in herbs used for hair treatment IV. The structure of the hair growth substance, polypurusterone A from Polyporus umbellatus fries. Chemical & Pharmaceutical Bulletin1999;47(11):1626-8. https://doi.org/10.1248/cpb.47.1626
  31. Park JB, Lee HS, Hwang SY, Hong SB, Kim HD, Yun CY. Effect of combined plant extracts on anti-obesity in rats fed a high-fat diet. Kor J Aesthet Cosmetol2011;9(1):25-34.
  32. Kwon HJ, Park YG. Statistical trends in family medicine journals. Korean J Fam Med 2012;33(1):9-16. https://doi.org/10.4082/kjfm.2012.33.1.9
  33. Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 2007;369(9555):71-7. https://doi.org/10.1016/S0140-6736(07)60033-6
  34. Al-Tahami BA, Al-Safi Ismail AA, Sanip Z, Yusoff Z, Shihabudin TMT, Singh TSP, et al. Metabolic and Inflammatory Changes with Orlistat and Sibutramine Treatment in Obese Malaysian Subjects. J Nippon Med Sch 2017;84(3):125-32. https://doi.org/10.1272/jnms.84.125
  35. LaFleur J, McAdam-Marx C, Kirkness C, Brixner DI. Clinical risk factors for fracture in postmenopausal osteoporotic women: A review of the recent literature. Ann Pharmacother 2008;42(3):375-86. https://doi.org/10.1345/aph.1K203
  36. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res 2011;6:30. https://doi.org/10.1186/1749-799X-6-30
  37. Chen JS, Sambrook PN. Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol2011;8(2):81-91. https://doi.org/10.1038/nrurol.2010.209
  38. Stepan JJ, Alenfeld F, Boivin G, Feyen JH, Lakatos P. Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr Regul 2003;37(4):225-38.
  39. Wu JN. An illustrated Chinese materia medica. New York: Oxford University Press; 2005, p. 59, 111, 225, 235, 403, 565.
  40. Kaminage T, Yasukawa K, Kanno H, Tai T, Nunoura Y, Takido M. Inhibitory effects of lanostane-type triterpene acids, the components of Poria cocos, on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 1996;53(5):382-5. https://doi.org/10.1159/000227592