DOI QR코드

DOI QR Code

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground

쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압

  • Kim, Kiseok (Department of Civil and Environmental Engineering, University of Illinois) ;
  • Oh, Ju-Young (Samsung C&T Corporation Civil Business) ;
  • Lee, Hyobum (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 김기석 ((미)일리노이주립대 토목환경공학과) ;
  • 오주영 (삼성물산 건설부문 Civil사업부) ;
  • 이효범 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2018.02.09
  • Accepted : 2018.03.08
  • Published : 2018.03.31

Abstract

The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

쉴드 TBM 공법은 터널 굴착으로 인한 터널 굴진면과 굴착면의 변형을 억제하여 지반의 변형을 최소화할 수 있는 공법이다. 이를 위해 쉴드 TBM의 운전 조건들을 적절히 제어하는 것은 매우 중요하다. 쉴드 TBM 공법의 여러 가지 운전 조건 중 굴진면압과 뒤채움주입압은 지반에 직접 압력을 가하는 과정으로 굴착에 인한 지반변위의 억제 뿐만 아니라, 지반 내 유효응력 및 간극수압의 변화에 영향을 미치는 요인이다. 굴진면압과 뒤채움압의 작용에 대한 지반의 반응은 지반의 강성 및 투수성에 따라 상이하다. 특히, 포화된 연약 점성토의 경우 굴진면압과 뒤채움압에 의한 지반 내 응력 변화의 영향이 장시간동안 잔류하므로 이에 대한 반응은 투수성이 큰 지반과 구별되는 거동을 보인다. 따라서 본 논문에서는 유한 요소법을 이용한 응력-간극수압 연계 매개변수해석을 통해 포화 점성토 지반에서 쉴드 TBM 운전 조건과 지반의 강성과 투수성이 지표침하에 미치는 영향에 대한 연구를 수행하였다. 연구 결과, 점성토 지반의 지표침하는 즉시침하와 압밀침하로 구분할 수 있었으며, 특히 압밀침하 거동은 지반의 투수성과 강성의 영향을 크게 받는 것으로 나타났다. 또한, 굴진면압과 뒤채움압의 증가가 항상 지표침하 감소로 이어지지는 않고, 임의 크기의 압력(한계 압력) 이상으로 증가된 굴진면압과 뒤채움압은 역으로 지표침하를 증가시키는 요인으로 작용할 수 있음이 확인되었다.

Keywords

References

  1. ABAQUS (2011), "Abaqus/Standard v.6.11, User Manual", Hibbit, Karlsson & Sorensen, Inc.
  2. Hashimoto, T., Nagaya, J., Konda, T. (1999), "Prediction of ground deformation due to shield excavation in clayey soils", Soils and Foundations, Vol. 39, No. 3, pp. 53-61. https://doi.org/10.3208/sandf.39.3_53
  3. Hwang, R.N., Moh, Z.C., Chen, M. (1996), "Pore pressure induced in soft ground due to tunnelling", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London, pp. 695-700.
  4. Jun, G.C., Kim, D.H. (2016), "A intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 3, pp. 273-282. https://doi.org/10.9711/KTAJ.2016.18.3.273
  5. Kasper, T. (2004), Finite element simulation maschineller tunnelvortriebe in wassergesattigtem lockergestein, Doctorial Thesis, Ruhr-University Bochum, pp. 84-90.
  6. Lambrughi, A, Roderiguez, L.M., Castellanza, R. (2012), "Development and validation of a 3D numerical model for TBM-EPB mechanised excavations", Computers and Geotechnics, Vol. 40, pp. 97-113. https://doi.org/10.1016/j.compgeo.2011.10.004
  7. Lewis, R.W., Schrefler, B.A. (2000), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley & Sons, England, pp. 475.
  8. Maehr, M., Herle, I. (2004), "Volume loss and soil dilatancy", Rivista Italiana di Geotecnica, Vol. 38, No. 4, pp. 32-41.
  9. Meschke, G., Kropik, C., Mang, H.A. (1996), "Numerical analyses of tunnel linings by means of a viscoplastic material model for shotcrete", International Journal for Numerical Methods in Engineering, Vol. 39, No. 18, pp. 3145-3162. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3145::AID-NME992>3.0.CO;2-M
  10. Oh, J.Y. (2013), "Interacktion der Ringspaltverpressung mit dem umgebenden Baugrund und der Tunnelauskleidung", Doctorial Thesis, RWTH Aachen University, pp. 34-76.
  11. Park, H., Oh, J.Y., Chang, S., Lee, S. (2016), "Case study of volume loss estimation during slurry TBM tunnelling in weathered zone of granite rock", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 1, pp. 61-74 https://doi.org/10.9711/KTAJ.2016.18.1.061
  12. Von Wolffersdorff, P.A. (1996), "A hypoplastic relation for granular materials with a predefined limit state surface", Mechanics of Cohesive-Frictional Materials, Vol. 1, No. 3, pp. 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3