DOI QR코드

DOI QR Code

Influence and Application of an External Variable Magnetic Field on the Aqueous HCl Solution Behavior: Experimental Study and Modelling Using the Taguchi Method

염산 수용액 거동에 대한 가변 외부 자기장의 적용과 영향: 실험 연구 및 Taguchi 법을 이용한 모델링

  • Hashemizadeh, Abbas (Department of Petroleum Engineering, Amirkabir University of Technology) ;
  • Ameri, Mohammad Javad (Department of Petroleum Engineering, Amirkabir University of Technology) ;
  • Aminshahidy, Babak (Department of Petroleum Engineering, Amirkabir University of Technology) ;
  • Gholizadeh, Mostafa (Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad)
  • Received : 2017.12.01
  • Accepted : 2018.01.22
  • Published : 2018.04.10

Abstract

Influences of the magnetic field on 5, 10 and 15 wt% (1.5, 3 and 4.5 M) HCl solution behaviour, which has widespread applications in petroleum well acidizing, were investigated in various conditions. Differences in the pH of magnetized hydrochloric acid compared to that of normal hydrochloric acid were measured. Taguchi design of experimental (DoE) method were used to model effects of the magnetic field intensity, concentration, velocity and temperature of acid in addition to the elapsed time. The experimental results showed that the magnetic field decreases [$H^+$] concentration of hydrochloric acid up to 42% after magnetization. Increasing the magnetic field intensity (with 28% contribution), concentration (with 42% contribution), and velocity of acid increases the effect of magnetic treatment. The results also demonstrated that the acid magnetization was-not influenced by the fluid velocity and heating. It was also displayed that the acid preserves its magnetic memory during time. The optimum combination of factors with respect to the highest change of [$H^+$] concentration was obtained as an acid concentration of 10% and an applied magnetic field of 4,300 Gauss. Due to the reduction of HCl reaction rate under the magnetization process, it can be proposed that the magnetized HCl is a cost effective and reliable alternative retarder in the matrix acidizing of hydrocarbon (crude oil and natural gas) wells.

염산 5, 10, 15 wt% 용액(1.5, 3.0, 4.5 M; 석유정 산성화에 사용되는 범위)에 대하여 여러 가지 조건에서 자기장이 미치는 영향을 연구하였다. 자화된 염산의 pH 변화를 정상적인 염산과 비교하였다. Taguchi 실험 설계법을 사용하여 자장강도, 농도, 유속, 온도 및 시간의 영향을 모델링하였다. 실험 결과 자화에 따라 염산의 $H^+$ 농도가 42%까지 감소하였다. 자장 강도(기여도 28%), 염산의 농도(기여도 42%), 유속이 커지면 자기장 적용의 효과가 증가하였다. 염산에 대한 자기장의 영향은 용액의 유속과 가열에 의하여 영향받지 않았으며 시간에 따른 자기장 메모리가 유지되는 것으로 나타났다. 최대 $H^+$ 농도 변화에 대한 최적의 조합은 10% 염산 용액 및 4,300 Gauss일 때로 얻어졌다. 자화 과정 중 염산의 반응 속도가 감소하므로 자화된 염산은 탄화수소(원유 및 천연가스)정의 매질 산성화에 대한 대체 지연제로 비용면에서 경제적이고 신뢰성 있는 방법이 될 것으로 제안한다.

Keywords

References

  1. L. M. A. Monzon and J. M. D. Coey, Magnetic fields in electrochemistry: The Lorentz force. A mini-review, Electrochem. Commun., 42, 38-41 (2014). https://doi.org/10.1016/j.elecom.2014.02.006
  2. B. Q. Welder and P. P. Everett, Practical performance of water-conditioning gadgets, Ind. Eng. Chem., 46, 954-960 (1954). https://doi.org/10.1021/ie50533a037
  3. D. A. Bograchev and A. D. Davydov, Optimization of electrolysis in the cylindrical electrochemical cell rotating in the magnetic field, Russ. J. Electrochem., 46, 331-335 (2010). https://doi.org/10.1134/S1023193510030110
  4. M. Hozayn, A. A. Abdel-Monem, A. Qados, and H. M. A. El-Hameed, Response of some food crops to irrigation with magnetized water under greenhouse condition, Aust. J. Basic Appl. Sci., 5, 29-36 (2011).
  5. Y. Takeuchi and M. Iwasaka, Effects of magnetic fields on dissolution of arthritis causing crystals, J. Appl. Phys., 117, 17D152 (2015). https://doi.org/10.1063/1.4919037
  6. Y. Oh, S. Kang, and D. Choe, Preparation and current-voltage characteristics of well-aligned NPD (4,4'bis[N-(1-napthyl)-N-phenyl-amino] biphenyl) thin films, Appl. Chem. Eng., 17, 591-596 (2006).
  7. Y. Kang and D. Choe, Formation and Current-voltage Characteristics of molecularly-ordered 4,4',4"-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film, Appl. Chem. Eng., 18, 506-510 (2007).
  8. Y. Wang, H. Wei, and Z. Li, Effect of magnetic field on the physical properties of water, Results Phys., 8, 262-267 (2018). https://doi.org/10.1016/j.rinp.2017.12.022
  9. X. Niu, K. Du, and F. Xiao, Experimental study on the effect of magnetic field on the heat conductivity and viscosity of ammonia-water, Energy Build., 43, 1164-1168 (2011). https://doi.org/10.1016/j.enbuild.2010.08.005
  10. M. Bahiraei and M. Hangi, Flow and heat transfer characteristics of magnetic nanofluids: A review, J. Magn. Magn. Mater., 374, 125-138 (2015). https://doi.org/10.1016/j.jmmm.2014.08.004
  11. A. J. Ahrar and M. H. Djavareshkian, Lattice Boltzmann simulation of a Cu-water nanofluid filled cavity in order to investigate the influence of volume fraction and magnetic field specifications on flow and heat transfer, J. Mol. Liq., 215, 328-338 (2016). https://doi.org/10.1016/j.molliq.2015.11.044
  12. G. B. Holman, State-of-the-Art Well Stimulation, J. Pet. Technol., 34, 239-241 (1982). https://doi.org/10.2118/10868-PA
  13. F. F. Farshad, J. Linsley, O. Kuznetsov, and S. Vargas, The effects of magnetic treatment on calcium sulfate scale formation. In: SPE Western Regional/AAPG Pacific Section Joint Meeting May 20-22, Anchorage, Alaska, USA (2002).
  14. X. W. Qiu, W. Zhao, S. J. Dyer, A. Al Dossary, S. Khan, and A. S. Sultan, Revisiting reaction kinetics and wormholing phenomena during carbonate acidising. In: International Petroleum Technology Conference, Jan. 19-22, Doha, Qatar (2014).
  15. T. Imamura, Y. Yamada, S. Oi, and H. Honda, Orientation behavior of carbonaceous mesophase spherules having a new molecular arrangement in a magnetic field, Carbon N. Y., 16, 481-486 (1978). https://doi.org/10.1016/0008-6223(78)90096-9
  16. K.-T. Chang and C.-I. Weng, The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation, J. Appl. Phys., 100, 43917 (2006). https://doi.org/10.1063/1.2335971
  17. H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, and S. Nakabayashi, Refractive indices of water and aqueous electrolyte solutions under high magnetic fields, J. Phys. Chem. A, 108, 1461-1464 (2004). https://doi.org/10.1021/jp0310145
  18. P. Neufeld, Effect of magnetic fields on electrochemical reactions, Corros. Sci., 36, 1947-1948 (1994). https://doi.org/10.1016/0010-938X(94)90029-9
  19. Z. Lu and W. Yang, In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions, Corros. Sci., 50, 510-522 (2008). https://doi.org/10.1016/j.corsci.2007.07.009
  20. E. A. Noor and A. H. Al-Moubaraki, Corrosion behavior of mild steel in hydrochloric acid solutions, Int. J. Electrochem. Sci., 3, 806-818 (2008).
  21. R. J. Chin and K. Nobe, Electrodissolution kinetics of iron in chloride solutions III. Acidic solutions, J. Electrochem. Soc., 119, 1457-1461 (1972). https://doi.org/10.1149/1.2404023
  22. G. Bikul'chyus, A. Ruchinskene, and V. Deninis, Corrosion behavior of low-carbon steel in tap water treated with permanent magnetic field, Prot. Met., 39, 443-447 (2003). https://doi.org/10.1023/A:1025890601669
  23. R. Sueptitz, K. Tschulik, M. Uhlemann, J. Eckert, and A. Gebert, Retarding the corrosion of iron by inhomogeneous magnetic fields, Mater. Corros., 65, 803-808 (2014). https://doi.org/10.1002/maco.201206890
  24. J. J. Barron, C. Ashton, and L. Geary, The effects of temperature on pH measurement, Tech. Serv. Dep., Reagecon Diagnostics Ltd, Ireland (2005).
  25. R. K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons (2001).
  26. J. S. Baker and S. J. Judd, Magnetic amelioration of scale formation, Water Res., 30, 247-260 (1996). https://doi.org/10.1016/0043-1354(95)00184-0
  27. K. Higashitani, A. Kage, S. Katamura, K. Imai, and S. Hatade, Effects of a magnetic field on the formation of $CaCO_3$ particles, J. Colloid Interface Sci., 156, 90-95 (1993). https://doi.org/10.1006/jcis.1993.1085
  28. H. Inaba, T. Saitou, K. Tozaki, and H. Hayashi, Effect of the magnetic field on the melting transition of $H_2O$ and $D_2O$ measured by a high resolution and supersensitive differential scanning calorimeter, J. Appl. Phys., 96, 6127-6132 (2004). https://doi.org/10.1063/1.1803922
  29. F. Civan, Reservoir Formatin Damage: Fundamentals, Moddelig, Assessment and Mitigation, Elsevier (2007).
  30. A. K. Deysarkar, J. C. Dawson, L. P. Sedillo, and S. K. Davis, Crosslinked acid gel, J. Can. Pet. Technol., 23, 26-32 (1984).
  31. O. O. Adenuga, H. A. Nasr-El-Din, and M. A. I. Sayed, Reactions of simple organic acids and chelating agents with dolomite. In: SPE Production and Operations Symposium, March 23-26, Oklahoma City, USA (2013).
  32. Q. Ji, L. Zhou and H. Nasr-El-Din, Acidizing sandstone reservoirs with aluminum-based retarded mud acid, SPE J., 21, 1-50 (2016). https://doi.org/10.2118/174553-PA
  33. F. Moosavi and M. Gholizadeh, Magnetic effects on the solvent properties investigated by molecular dynamics simulation, J. Magn. Magn. Mater., 354, 239-247 (2014). https://doi.org/10.1016/j.jmmm.2013.11.012
  34. X.-F. Pang and B. Deng, The changes of macroscopic features and microscopic structures of water under influence of magnetic field, Physica B, 403, 3571-3577 (2008). https://doi.org/10.1016/j.physb.2008.05.032
  35. B. Deng and X. Pang, Variations of optic properties of water under action of static magnetic field, Chin. Sci. Bull., 52, 3179-3182 (2007). https://doi.org/10.1007/s11434-007-0430-7
  36. H.-J. Kim, D.-C. Kwon, and N.-S. Yoon, A one-dimensional fluid simulation of a magnetized DC discharge including the non-uniform effects of the magnetic field, Curr. Appl. Phys., 9, 647-650 (2009). https://doi.org/10.1016/j.cap.2008.04.016