DOI QR코드

DOI QR Code

300 m3 h-1급 수소 생산을 위한 글리세롤 수증기 개질반응의 기술·경제성 분석

Techno-economic Analysis of Glycerol Steam Reforming for H2 Production Capacity of 300 m3 h-1

  • 허주헌 (대구가톨릭대학교 신소재화학공학과) ;
  • 임한권 (대구가톨릭대학교 신소재화학공학과)
  • Heo, Juheon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Lim, Hankwon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu)
  • 투고 : 2017.12.28
  • 심사 : 2018.01.16
  • 발행 : 2018.04.10

초록

본 논문에서는 $300m^3\;h^{-1}$급 수소 생산을 위한 글리세롤 수증기 개질반응에 대해 기술 경제성 평가를 수행하였다. 상업용 공정 설계 프로그램인 Aspen $HYSYS^{(R)}$를 이용하여 글리세롤 수증기 개질반응에 대한 공정을 설계하였으며, 반응온도에 따른 수소 생산량의 차이를 비교 분석하였다. 또한, 항목별 경제성 평가, 민감도 분석, 현금흐름도를 통하여 경제성 평가를 진행하였으며, $300m^3\;h^{-1}$급 글리세롤 수증기 개질반응에서의 수소 생산 단가는 5.10 $ ${kgH_2}^{-1}$로 계산되었다. 수소 생산 단가에 영향을 끼치는 주요 인자를 파악하기 위해 민감도 분석을 실시하였으며, 수소 판매 단가에 따른 현금흐름도 분석을 통해 순현재가치, 할인회수기간, 현재가치율과 같은 다양한 경제성 인자를 파악하였다.

In this paper, the techno-economic analysis of glycerol steam reforming for $H_2$ production capacity of $300m^3\;h^{-1}$ was carried out. The process of glycerol steam reforming was constructed by using Aspen $HYSYS^{(R)}$, a commercial process simulator, and parametric studies for the effect of the operating temperature on $H_2$ production was performed. Moreover, the economic analysis was conducted through an itemized cost estimation, sensitivity analysis (SA) and cash flow diagram (CFD), and the unit $H_2$ production cost was 5.10 $ ${kgH_2}^{-1}$ through the itemized cost estimation of glycerol steam reforming for $H_2$ production capacity of $300m^3\;h^{-1}$. SA was employed to identify key economic factors and various economic indicators such as net present value (NPV), discounted payback period (DPBP), and present value ratio (PVR) were found according to $H_2$ selling price using CFD.

키워드

참고문헌

  1. M. S. Masnadi, R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi, C. J. Lim, N. Ellis, and J. R. Grace, Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel, 117, 1204-1214 (2014). https://doi.org/10.1016/j.fuel.2013.02.006
  2. A. Hejna, P. Kosmela, K. Formela, L, Piszczyk, and J. T. Haponiuk, Potential applications of crude glycerol in polymer technology-Current state and perspectives, Renew. Sustain. Energy Rev., 66, 449-475 (2016). https://doi.org/10.1016/j.rser.2016.08.020
  3. M. E. Sad, H. A. Duarte, Ch. Vignatti, C. L. Padro, and C. R. Apesteguia, Steam reforming of glycerol: Hydrogen production optimization, Int. J. Hydrogen Energy, 40, 6097-6106 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.043
  4. P. D. Vaidya and A. E. Rodrigues, Glycerol reforming for hydrogen production: A review, Chem. Eng. Technol., 32, 1463-1469 (2009). https://doi.org/10.1002/ceat.200900120
  5. C. K. Cheng, S. Y. Foo, and A. A. Adesina, Glycerol steam reforming over bimetallic Co-Ni/$Al_2O_3$, Ind. Eng. Chem. Res., 49, 10804-10817 (2010). https://doi.org/10.1021/ie100462t
  6. M. S. Nobandegani, M. R. S. Birjandi, T. Darbandi, M. M. Khalilipour, F. Shahraki, and D. Mohebbi-Kalhori, An industrial steam methane reformer optimization using response surface methodology, J. Nat. Gas Sci. Eng., 36, 540-549 (2016) https://doi.org/10.1016/j.jngse.2016.10.031
  7. Y. Li, Q. Fu, and M. Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts, Appl. Catal. B, 27, 179-191 (2000). https://doi.org/10.1016/S0926-3373(00)00147-8
  8. R. G. Falcon, D. V. Alonso, L. M. G. Fernandez, and L. Perez-Lombard, Improving energy efficiency in a naphtha reforming plant using Six Sigma methodology, Fuel Process. Technol., 103, 110-116 (2012). https://doi.org/10.1016/j.fuproc.2011.07.010
  9. S. S. Seyitoglu, I. Dincer, and A. Kilicarslan, Energy and exergy analyses of hydrogen production by coal gasification, Int. J. Hydrogen Energy, 42, 2592-2600 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.228
  10. B. Lee, H. Chae, N.-H. Choi, C. Moon, S. Moon, and H. Lim, Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea, Int. J. Hydrogen Energy, 42, 6462-6471 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.153
  11. M. Voldsund, K. Jordal, and R. Anantharaman, Hydrogen production with $CO_2$ capture, Int. J. Hydrogen Energy, 41, 4969-4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009
  12. A. Z. Senseni, M. Rezaei, and F. Meshkani, Glycerol steam reforming over noble metal nanocatalysts, Chem. Eng. Res. Des., 123, 360-366 (2017). https://doi.org/10.1016/j.cherd.2017.05.020
  13. J. M. Silva, M. A. Soria, and L. M. Madeira, Steam reforming of glycerol for hydrogen production: Modeling study, Int. J. Hydrogen Energy, 41, 1408-1418 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.055
  14. L. Ou, R. Thilakaratne, R. C. Brown, and M. M. Wright, Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing, Biomass Bioenergy, 72, 45-54 (2015). https://doi.org/10.1016/j.biombioe.2014.11.018
  15. W. Han, Z. Liu, J. Fang, J. Huang, H. Zhao, and Y. Li, Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor, J. Clean. Prod., 127, 567-572 (2016). https://doi.org/10.1016/j.jclepro.2016.04.055
  16. J. Heo, B. Lee, and H. Lim, Techno-economic analysis for $CO_2$ reforming of a medium-grade landfill gas in a membrane reactor for $H_2$ production, J. Clean. Prod., 172, 2585-2593 (2018). https://doi.org/10.1016/j.jclepro.2017.11.151
  17. S. Kim, S.-K. Ryi, and H. Lim, Techno-economic analysis (TEA) for $CO_2$ reforming of methane in a membrane reactor for simultaneous $CO_2$ utilization and ultra-pure $H_2$ production, Int. J. Hydrogen Energy, 43(11), 5881-5893 (2018). https://doi.org/10.1016/j.ijhydene.2017.09.084
  18. S. Jeong, S. Kim, B. Lee, S.-K. Ryi, and H. Lim, Techno-economic analysis: Ethane steam reforming in a membrane reactor with $H_2$ selectivity effect and profitability analysis, Int. J. Hydrogen Energy, Doi:10.1016/j.ijhydene.2017.07.202.
  19. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Pearson Press, New Jersey, USA (2013).
  20. Nexant Inc., Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment. Task 1: Cost Estimates of Small Modular Systems, National Renewable Energy Laboratory Golden, CO, USA (2006).
  21. C. Yang, J. Ogden, Determining the lowest-cost hydrogen delivery mode, Int. J. Hydrogen Energy, 32, 268-286 (2007). https://doi.org/10.1016/j.ijhydene.2006.05.009
  22. Z. Hoffman, Simulation and Economic Evaluation of Coal Gasification with SETS Reforming Process for Power Production, MS Thesis, Louisiana State University, Baton Rouge, LA, USA (2005).
  23. B. Lee, H. Chae, N.-H. Choi, C. Moon, S. Moon, and H. Lim, Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea, Int. J. Hydrogen Energy, 42, 6462-6471 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.153
  24. S. Ahmed and D. Papadias, Hydrogen from glycerol: A feasibility study, 2010 Annual Merit Review and Peer Evaluation Report, DOE Hydrogen Program, June 7-11, Washington DC, USA (2010).
  25. C. Song, Q. Liu, N. Ji, Y. Kansha, and A. Tsutsumi, Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration, Appl. Energy, 154, 392-401 (2015). https://doi.org/10.1016/j.apenergy.2015.05.038
  26. B. Gim, J. Kim, and H. Ko, Economic evaluation of domestic low-temperature water electrolysis hydrogen production, Trans. Korean Hydrogen New Energy Soc., 22, 559-567 (2011).