DOI QR코드

DOI QR Code

다양한 형태의 금속 산화물을 이용한 Pd계 복합 수소분리막의 2원계 중간층 형성에 관한 연구

A Study of the Formation of Binary Intermediate Layer on Pd-based Hydrogen Separation Membrane Using Various Types of Metal Oxides

  • 황인혁 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Hwang, In-Hyuck (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
  • 투고 : 2017.12.05
  • 심사 : 2018.01.03
  • 발행 : 2018.04.10

초록

본 연구에서는 복합 수소분리막 중간층의 pin hole, crack 및 defect를 최소화하기 위하여 powder type과 sol type의 금속산화물을 이용하여 복합화하였다. 중간층의 표면 형상과 투과 특성은 주사전자현미경(SEM) 분석과 $N_2$ 투과도 테스트를 통해 평가하였으며, 제조한 수소분리막의 성능평가를 위해 $N_2$$H_2$를 이용하여 단일가스 투과 테스트를 수행하였다. Powder type과 sol type의 금속산화물을 각각 이용하여 중간층을 적층한 결과 sol type 금속산화물을 이용하여 적층한 중간층의 표면 조도가 매우 낮았으며, 특히 $TiO_2$ sol로 형성된 중간층의 pin-hole, crack 및 defect가 현저히 감소하였다. Powder와 sol을 복합화하여 적층한 중간층은 sol로 형성된 중간층과 거의 유사한 특성을 보였으며, 이를 기반으로 제조한 수소분리막은 1 bar의 압력구배, 672 K의 온도에서 약 $0.32mol/m^2s$의 수소 투과도를 나타내었으며, 선택도는 약 10,890 이상으로 측정되었다.

In this study, the intermediate layer in Pd-based hydrogen separation membrane was synthesized to minimize the surface roughness and defects using powder-type and sol-type metal oxides. The surface properties and gas permeation characteristics were analysed by SEM and $N_2$ gas permeation test. The coating layer composed of sol type metal oxides has smooth surface, especially the layer coated by $TiO_2$ sol has little pin holes, cracks and defects. The binary layer composed of powder type and sol type metal oxides has similar flux characteristics to a single sol type layer. The Pd-based composite membrane improved by the binary intermediate layer exhibited $0.32mol/m^2s$ of the hydrogen permeation flux with a selectivity ($H_2/N_2$) of ~10,890 at 672 K and a pressure difference of 1 bar.

키워드

참고문헌

  1. J. W. Sheffield, Energy security through hydrogen, In: J. W. Sheffield and C. Sheffield (eds.), Assessment of Hydrogen Energy for Sustainable Development, p. 1-8, Springer, Dordrecht, Netherlands (2007).
  2. J. Conti and P. Holtberg, International Energy Outlook 2011, U.S. Energy Information Administration, Washington (2011).
  3. S. K. Ryi, J. Y. Han, C. H. Kim, H. Lim, and H. Y. Jung, Technical trends of hydrogen production, Clean Technol., 23(2), 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
  4. N. Armaroli and V. Balzani, Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future, Wiley-VCH, Weinheim, Germany (2011).
  5. T. Abbasi and S. A. Abbasi, 'Renewable hydrogen': Prospects and challenges, Renew. Sustain. Energy Rev., 15(6), 3034-3040 (2011). https://doi.org/10.1016/j.rser.2011.02.026
  6. T. C. Merkel, M. Zhou, and R. W. Baker, Carbon dioxide capture with membranes at an {IGCC} power plant, J. Membr. Sci., 389, 441-450 (2012). https://doi.org/10.1016/j.memsci.2011.11.012
  7. L. Shao, B. T. Low, T. Chung, and A. R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, J. Membr. Sci., 327, 18-31 (2009). https://doi.org/10.1016/j.memsci.2008.11.019
  8. P. Bermardo, E. Drioli, and G. Golemme, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48(10), 4638-4663 (2009). https://doi.org/10.1021/ie8019032
  9. N. W. Ockwig and T. M. Nenoff, Membranes for Hydrogen Seperation, Chem. Rev., 107(10), 4078-4110 (2007). https://doi.org/10.1021/cr0501792
  10. S. Uemiya, State-of-the-art of supported metal membranes for gas separation, Sep. Purif. Methods, 28, 51-85 (1999). https://doi.org/10.1080/03602549909351644
  11. R. Dittmeyer, V. Hollein, and K. Daub, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. A, 173(1-2), 135-184 (2001). https://doi.org/10.1016/S1381-1169(01)00149-2
  12. S. K. Ryi, N. Xu, A. Li, C. J. Lim, and J. R. Grace, Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath, Int. J. Hydrogen Energy, 35(6), 2328-2335 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.054
  13. Z. Shi, S. Wu, and J. A. Szpunar, Microstructure transformation of Pd membrane deposited on a porous Inconel substrate in hydrogen permeation at elevated temperature, J. Membr. Sci., 284(1-2), 424-430 (2006). https://doi.org/10.1016/j.memsci.2006.08.017
  14. S. K. Ryi, J. S. Park, K. R. Hwang, C. B. Lee, and S. W. Lee, Repair of Pd-based composite membrane by polishing treatment, Int. J. Hydrogen Energy, 36(21), 13776-13780 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.120
  15. S. K. Ryi, H. S. Ahn, J. S. Park, and D. W. Kim, Pd-Cu alloy membrane deposited on $CeO_2$ modified porous nickel support for hydrogen separation, Int. J. Hydrogen Energy, 39(9), 4698-4703 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.031
  16. S. K. Ryi, S. W. Lee, D. K. Oh, B. S. Seo, J. W. Park, J. S. Park, D. W. Lee, and S. S. Kim, Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane, J. Membr. Sci., 467, 93-99 (2014). https://doi.org/10.1016/j.memsci.2014.04.058
  17. A. Tarditi, C. Gerboni, and L. Cornaglia, PdAu membranes supported on top of vacuum-assisted $ZrO_2$-modified porous stainless steel substrates, J. Membr. Sci., 428(1), 1-10 (2013). https://doi.org/10.1016/j.memsci.2012.10.029
  18. R. Sanz, J. A. Calles, D. Alique, L. Furones, S. Ordonez, P. Marin, P. Corengia, and E. Fernandez, Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane, Int. J. Hydrogen Energy, 36(24), 15783-15793 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.102
  19. G. Straczewski, J. Voller-Blumenroth, H. Beyer, P. Pfeifer, M. Steffen, I. Felden, A. Heinzel, M. Wessling, and R. Dittmeyer, Development of thin palladium membranes supported on large porous 310 L tubes for a steam reformer operated with gas-to-liquid fuel, Chem. Eng. Process., 81, 13-23 (2014). https://doi.org/10.1016/j.cep.2014.04.002
  20. J. Shu, A. Adnot, B. P. A. Grandjean, and S. Kaliaguine, Structurally stable composite Pd-Ag alloy membranes: introduction of a diffusion barrier, Thin Solid Films, 286(1-2), 72-79 (1996). https://doi.org/10.1016/S0040-6090(96)08544-6
  21. A. Qiao, K. Zhang, Y. Tian, L. Xie, H. Luo, Y. S. Lin, and Y. Li, Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier, Fuel, 89(6), 1274-1279 (2010). https://doi.org/10.1016/j.fuel.2009.12.006
  22. M. L. Bosko, J. B. Miller, E. A. Lombardo, A. J. Gellman, and L. M. Cornaglia, Surface characterization of Pd-Ag composite membranes after annealing at various temperatures, J. Membr. Sci., 369(1-2), 267-276 (2011). https://doi.org/10.1016/j.memsci.2010.12.006
  23. M. L. Bosko, J. F. Munera, E. A. Lombardo, and L. M. Cornaglia, Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support, J. Membr. Sci., 364(1-2), 17-26 (2010). https://doi.org/10.1016/j.memsci.2010.07.039
  24. J. A. Calles, R. Sanz, and D. Alique, Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support, Int. J. Hydrogen Energy, 37(7), 6030-6042 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.164
  25. S. K. Ryi, S. W. Lee, D. K. Oh, B. S. Seo, J. W. Park, J. S. Park, D. W. Lee, and S. S. Kim, Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane, J. Membr. Sci., 467, 93-99 (2014). https://doi.org/10.1016/j.memsci.2014.04.058
  26. S. S. Kim, N. Xu, A. Li, J. R. Grace, C. J. Lim, and S. K. Ryi, Development of a new porous metal support based on nickel and its application for Pd based composite membranes, Int. J. Hydrogen Energy, 40, 3520-3527 (2015). https://doi.org/10.1016/j.ijhydene.2014.08.075