DOI QR코드

DOI QR Code

Observations on Fragmentation Pathway of Farinomalein and its Isomers by Structural Investigation Using LC-MS/MS

  • Firke, Narayan P. (Department of Chemistry, Willingdon College, Sangli, Affiliated to Shivaji University) ;
  • Markandeya, Anil G. (Department of Chemistry, Fergusson College, Affiliated to Savitribai Phule Pune University) ;
  • Deshmukh, Rajendra S. Konde (Department of Chemistry, Fergusson College, Affiliated to Savitribai Phule Pune University) ;
  • Pingale, Shirish S. (Department of Chemistry, ACS College, Narayangaon, Affiliated to Savitribai Phule Pune University)
  • 투고 : 2017.11.21
  • 심사 : 2018.01.10
  • 발행 : 2018.03.30

초록

Farinomalein is a maleimide-bearing compound well known for its anti-fungal activity. In the present study, synthesis of farinomalein is achieved via Stobbe condensation followed by Haval-Argade contrathermodynamic rearrangement. Kinetically driven Stobbe condensation followed by condensation with beta-alanine reveals formation of two isomers of farinomalein. This article describes application of LC-MS/MS in structure elucidation of farinomalein 1 and its isomers 2 and 3 encountered in its synthesis. The proposed distinct fragmentation pathway is supported by rational organic reaction mechanism. These fragmentation pathways are significant for analytical method development of farinomalein in near future. The structures of farinomalein 1 and its isomers 2 and 3 have been assigned undisputedly.

키워드

E1MPSV_2018_v9n1_37_f0001.png 이미지

Figure 1. Structure of farinomalein 1, isomer 2 (pseudonym:isofarinomalein) and isomer 3.

E1MPSV_2018_v9n1_37_f0002.png 이미지

Figure 2. Chromatogram showing peak area for isomers 2 and 3.

E1MPSV_2018_v9n1_37_f0003.png 이미지

Figure 3. Fragmentation pathway for isomer 2.

E1MPSV_2018_v9n1_37_f0004.png 이미지

Figure 4. Fragmentation pathway for isomer 3.

E1MPSV_2018_v9n1_37_f0005.png 이미지

Figure 5. Fragmentation pathway of farinomalein 1.

참고문헌

  1. Putri, S. P.; Kinoshita, H.; Ihara, F.; Igarashi, Y.; Nihira, T. J. Nat. Prod. 2009, 72, 1544. https://doi.org/10.1021/np9002806
  2. Miles, W. H.; Yan, M. Tetrahedron Lett. 2010, 51, 1710. https://doi.org/10.1016/j.tetlet.2010.01.083
  3. Aiwale, S. T.; Sardi, P.; Dallavalle, S. Syn. Comm. 2012, 43, 1455.
  4. Lahore, S.; Aiwale, S. T.; Sardi, P.; Dallavalle, S. Tetrahedron Lett. 2014, 55, 4196-4198. https://doi.org/10.1016/j.tetlet.2014.05.023
  5. Rinehart, K. L. J. Am. Chem. Soc. 1965, 87, 4407.
  6. Biemann, K. Annu. Rev. Ana. Chem. 2015, 8, 1. https://doi.org/10.1146/annurev-anchem-071114-040110
  7. Kinghorn A., D.; Falk, H; Kobayashi, J. Progress in the Chemistry of Organic Natural Products 100, Springer International Publishing, 2015.
  8. Parichystal, J.; Schug, K. A.; Lemr, K.; Novak, J.; Vladimir, H. Anal. Chem. 2016, 88, 10338. https://doi.org/10.1021/acs.analchem.6b02386
  9. Haval, K. P.; Argade, N. P. Tetrahedron 2006, 62, 3557. https://doi.org/10.1016/j.tet.2006.01.091
  10. Banerjee, S.; Tayde, R. A.; Sharma, B. D. Indian J. Chem. 2009, 48B, 882.
  11. Tanaka, K.; Suginoa, T.; Toda, F. Green Chem. 2000, 2, 303. https://doi.org/10.1039/b006565j
  12. White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871. https://doi.org/10.1021/jo990905z