DOI QR코드

DOI QR Code

통영 미륵도 주변 화산암류의 SHRIMP U-Pb 연대측정과 시간층서

SHRIMP U-Pb Dating and Chronostratigraphy of the Volcanic Rocks around the Mireukdo Island, Tongyeong, Korea

  • 황상구 (안동대학교 지구환경과학과) ;
  • 이소진 (안동대학교 지구환경과학과) ;
  • 송교영 (한국지질자원연구원 국토지질연구부) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부)
  • Hwang, Sang Koo (Department of Earth and Environmental Science, Andong National University) ;
  • Lee, So Jin (Department of Earth and Environmental Science, Andong National University) ;
  • Song, Kyo-Young (Korea Institute of Korea Institute of Geoscience and Mineral Resources) ;
  • Yi, Keewook (Division of Environmental and Material Sciences, Korea Basic Science Institute)
  • 투고 : 2018.02.13
  • 심사 : 2018.03.24
  • 발행 : 2018.03.31

초록

통영 미륵도 주변의 유천층군 화산암류는 하부 안산암질암류(주사산아층군), 하부 유문암질암류(운문사아층군), 상부 안산암질암류(욕지아층군)와 상부 유문암질암류(사량아층군)로 구분된다. 우리는 각 아층군의 주요 층서단위에 대해 SHRIMP U-Pb 연대측정을 실시하여 이들의 분출시기와 층서관계를 명확하게 하였다. SHRIMP U-Pb 측정에 의하면, 하부 유문암질암류의 풍화리응회암에서 $88.95{\pm}0.44Ma$(n=11)와 추도응회암에서 $82.56{\pm}0.95Ma$(n=10)의 일치곡선 연대를 얻었으며, 상부 안산암질암류의 달아안산암에서 $73.01{\pm}0.75Ma$(n=11)의 일치곡선 연대를 얻었다. 그리고 상부 유문암질암류의 남산유문암맥에서 $71.74{\pm}0.47Ma$(n=14)에 집중되는 일치곡선 연대를 보여주며, 화강섬록암맥에서 $70.7{\pm}3.5Ma$의 겉보기 연대를 보여준다. 이들 자료는 미륵도 주변에서 일어났던 각 층서단위의 분출 혹은 주입시기를 확실케 하며 주사산아층군, 운문사아층군, 욕지아층군과 사량아층군의 시간층서로 구분짓게 한다. 더불어 이 층서는 경상분지에서 백악기 후기 유천층군의 다른 화산단위와 시간층서적 대비를 할 수 있는 실마리를 제공한다.

The volcanic rocks around Mieukdo Island, Tongyeong, are classified as lower andesitic rocks (Jusasan Subgroup) and rhyolitic rocks (Unmunsa Subgroup), and upper andesitic rocks (Yokji Subgroup) and rhyolitic rocks (Saryang Subgroup). We confirmed their eruption timings and stratigraphic relationships, based on SHRIMP U-Pb zircon dating for zircons from major stratigraphic units of the subgroups. By the SHRIMP U-Pb dating, the samples yield the concordia ages of $88.95{\pm}0.44Ma$(n=11) in Punghwari Tuff and $82.56{\pm}0.95Ma$(n=10) in Chudo Tuff of the lower andesitic rocks, and $73.01{\pm}0.75Ma$(n=11) in Dara Andesite of the upper andesitic rocks. And then samples show a concordia age of $71.74{\pm}0.47Ma$(n=14) in Namsan rhyolite dyke of the upper rhyolitic rocks and an apparent age of $70.7{\pm}3.5Ma$ in granodiorite dyke, These data confirm the eruption or injection timings of the units and allow them to distinguish chronostratigraphy of Jusasan, Unmunsa, Yokji and Saryang Subgroups around the Mireukdo Island. In addition, the subgroups give a clue that can make a chronostratigraphical correlation with different volcanic units of the Late Cretaceous Yucheon Group in the Gyeongsang basin.

키워드

참고문헌

  1. Hartman, L.A., Leite, J.A.D., Silva, L.C., Remus, M.V.D., McNaughton, N.J., Groves, D.I., Fletcher, I.R., Santos, J.O.S. and Vasconcellos, M.A.Z., 2000, Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Australian Journal of Earth Sciences, 47, 829-844. https://doi.org/10.1046/j.1440-0952.2000.00815.x
  2. Hwang, S.K., 2012, Tectonic setting and arc volcanisms of the Gyeongsang Arc in the southeastern Korean Peninsula. Journal of the Petrological Society of Korea, 21, 367-383 (in Korea with English abstract). https://doi.org/10.7854/JPSK.2012.21.3.367
  3. Hwang, S.K., Park, S.H. and Song, K.-Y., 2016, Explanatory text of the geological map of Mijo.Mireukdo Sheets. Korea Institute of Geoscience and Mineral Resources, 78p.
  4. Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241. https://doi.org/10.2113/0530215
  5. Jwa, Y.-J. and Park, J.-M., 1996, Petrology of the igneous rocks in the Goseong area, Gyeongsang basin I, Major element geochemistry and K-Ar radiometric age. Economical and Environmental Geology, 29, 562-573 (in Korea with English abstract).
  6. Lee, C.-H. and Lee, S.-W., 1999, Petrology and petrochemistry of the granitoids in the Geoje Island, Korea. Journal of Korean Earth Science Society, 20, 62-79 (in Korea with English abstract).
  7. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, Berkeley, California. 77p.
  8. Ludwig, K.R., 2009, SQUID 2.50: A User's manual. Berkeley Geochronology Center Special Publication, 5, Berkeley, California. 100p.
  9. Park, M.-E., Sung, K.-Y., James, L.P., 2001, Au-Ag-Te mineralization by boiling and dilution of meteoric groundwater in the Tongyeong ephithermal gold system, Korea: implications from reaction path modeling. Econ.Environ. Geol. 34, 507-522.
  10. Vavra, G., Schmid, R. and Gebauer, D., 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380-404. https://doi.org/10.1007/s004100050492
  11. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.P., and Ridley, W.I. (eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7, 1-35.
  12. Yun, S.H., Lee, J.D., Lee, S.W., Koh, J.S. and Seo, Y.J., 1997, Petrology of the volcanic rocks in Geoje Island, South Korea. Journal of Petrological Society of Korea, 6, 1-18 (in Korea with English abstract).
  13. Zhang, Y.-B., Zhai, M., Hou, Q.-L., Li, T.-S., Liu, F. and Hu, B., 2012, Late Cretaceous colcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratic destruction of the North China Craton. Journal of Asian Earth Sciences, 47, 252-264. https://doi.org/10.1016/j.jseaes.2011.12.011