DOI QR코드

DOI QR Code

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity

Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계

  • Lee, Dae-Won (Department of Chemical Engineering, Kangwon National University) ;
  • Sung, Ju Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University)
  • 이대원 (강원대학교 화학생물공학부 화학공학전공) ;
  • 성주영 (고려대학교 화공생명공학과) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Received : 2017.10.31
  • Accepted : 2017.11.29
  • Published : 2018.04.01

Abstract

As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.

최근 선진국을 중심으로 고연비-저배출 내연기관 (디젤) 자동차 보급의 필요성이 대두되면서 기존 촉매후처리 장치의 저온성능 강화를 위한 기술적 방안들이 시급히 요구되고 있다. 본 논문에서는 디젤엔진 배출 탄소입자상 물질의 연소반응에 있어 연료함유 촉매(Fuel-Borne Catalyst)와 페로브스카이트(Perovskite)의 복합촉매 시스템이 보이는 상용모델촉매 대비 우수한 저온 연소성능과 이의 Perovskite 촉매 조성에 대한 의존성에 관해 논하였다. Fe/Ce 계열 연료함유 촉매가 A-site 원소(La)에 K이 부분치환되고, B-site 금속이 Fe인 Perovskite 촉매와 복합화될 때 상대적으로 우수한 저온 연소성능 개선효과가 관찰되었다. 이를 관찰하기 위해 연료함유 촉매가 함유되거나 함유하지 않은 탄소 입자상 물질과 다양한 조성의 La 계열 Perovskite 촉매를 혼합한 고정층에 대한 온도상승 산화반응 실험(Temperature-Programmed Oxidation)을 수행하였으며, 이산화탄소 생성과 질소산화물 농도 저하 패턴의 연동특성을 통해 두 촉매의 상호 연계작용을 유추하였다.

Keywords

References

  1. Zammit, M., DiMaggio, C., Kim, C., Lambert, C., Muntean, G., Peden, C., Parks, J. and Howden, K., "Future Automotive Aftertreatment Solutions: The $150^{\circ}C$ Challenge Worshop Report," US Drive Workshop, November, Southfield, Michigan (2012).
  2. Reichert, D. BoCkhorn, H. and Kureti, S., "Study of the Reaction of $No_x$ and soot on $Fe_2O_3$ Catalyst in Excess of $O_2$, " Appl. Catal., B, 80(3-4), 248-259(2008). https://doi.org/10.1016/j.apcatb.2007.11.024
  3. Teraoka Y. and Kagawa, S., "Simultaneous Catalytic Removal of $No_x$ and Diesel Soot Particulates," Catal. Surv. Jpn., 2, 155- 164(1998). https://doi.org/10.1023/A:1019038710973
  4. Lee, D.-W., Sung, J. Y., Park, J., Hong, Y.-K., Lee, S. H., Oh, S.-H. and Lee, K.-Y., "The Enhancement of Low-temperature Combustion of Diesel PM Through Concerted Application of FBC and Perovskite," Catal. Today, 157, 432-435(2010). https://doi.org/10.1016/j.cattod.2010.02.047
  5. Harris, S. J. and Maricq, M. M., "Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter," J. Aerosol Sci., 32, 749-764(2001). https://doi.org/10.1016/S0021-8502(00)00111-7
  6. Kim, J., Park, Y., Kwon, S., Hwang, J. and Ko, J., "Understanding of Theories for Diesel Vehicular Particulate Matters and its Removal Technologies," A report from National Institute of Environmental Research (NIER, Republic of Korea), p.3, (2013).
  7. Lee, D.-W., Song, S.-J. and Lee, K.-Y., "Reduction of Lean $NO_2$ with Diesel Soot over Metal-exchanged ZSM5, Perovskite and $\gamma$-alumina Catalysts," Korean J. Chem. Eng., 27(2), 452-458(2010). https://doi.org/10.1007/s11814-010-0075-0
  8. Teraoka, Y., Nakano, K., Shangguan, W. and Kagawa, S., "Simultaneous Catalytic Removal of Nitrogen Oxides and Diesel Soot Particulate over Perovskite-related Oxides," Catal. Today, 27, 107- 113(1996). https://doi.org/10.1016/0920-5861(95)00177-8
  9. Teraoka, Y., Kanada, K. and Kagawa S., "Synthesis of La-KMn-O Perovskite-type Oxides and Their Catalytic Property for Simultaneous Removal of $No_x$ and Diesel Soot Particulates", Appl. Catal., B, 34, 73-78(2001). https://doi.org/10.1016/S0926-3373(01)00202-8
  10. Shangguan, W. F., Teraoka Y. and Kagawa, S., "Promotion Effect of Potassium on the Catalytic Property of $CuFe_2O_4$ for the Simultaneous Removal of $No_x$ and Diesel Soot Particulate," Appl. Catal., B, 16(2), 149-154(1998). https://doi.org/10.1016/S0926-3373(97)00068-4
  11. Russo, N., Fino, D., Saracco G. and Specchia, V., "Promotion Effect of Potassium on the Catalytic Property of $CuFe_2O_4$ for the Simultaneous Removal of $No_x$ and Diesel Soot Particulate," J. Catal., 229(2), 459-469(2005). https://doi.org/10.1016/j.jcat.2004.11.025
  12. Fino, D., Russo, N., Saracco G. and Specchia, V., "The Role of Suprafacial Oxygen in Some Perovskites for the Catalytic Combustion of Soot," J. Catal., 217(2), 367-375(2003). https://doi.org/10.1016/S0021-9517(03)00143-X
  13. Lopez-Suarez, F. E., Bueno-Lopez, A., Illan-Gomez, M. J., Ura, B. and Trawczynski, J., "Potassium Stability in Soot Combustion Perovskite Catalysts," Top. Catal., 52, 2097-2100(2009). https://doi.org/10.1007/s11244-009-9385-z
  14. Atribak, I., Bueno-Lopez, A., Garcia-Garcia, A., Navarro, P., Frias, D. and Montes, M., "Catalytic Activity for Soot Combustion of Birnessite and Cryptomelane," Appl. Catal., B, 93, 267-273(2010). https://doi.org/10.1016/j.apcatb.2009.09.038
  15. Suzuki, T., Kyotani, T. and Tomita, A., "Study on the Carbon-Nitric Oxide Reaction in the Presence of Oxygen," Ind. Eng. Chem. Res., 33, 2840-2845(1994). https://doi.org/10.1021/ie00035a038
  16. Peng, X., Lin, H., Shangguan. W. and Huang, Z., "A Highly Efficient and Porous Catalyst for Simultaneous Removal of $No_x$ and Diesel Soot," Catal. Commun., 8(2), 157-161(2007). https://doi.org/10.1016/j.catcom.2006.04.015
  17. Wang, K., Qian, L., Zhang, L., Liu, H. and Yan, Z., "Simultaneous Removal of $No_x$ and Soot Particulates over $La_{0.7}Ag_{0.3}MnO_3$ Perovskite Oxide Catalysts," Catal. Today, 158(3-4), 423-426(2010). https://doi.org/10.1016/j.cattod.2010.06.001
  18. Li, Z., Meng, M., Li, Q., Xie, Y., Hu, T. and Zhang, J., "Fe-substituted Nanometric $La_{0.9}K_{0.1}Co_{1-x}Fe_xO_{3-{\delta}}$ Perovskite Catalysts Used for Soot Combustion, $No_x$ Storage and Simultaneous Catalytic Removal of Soot and $No_x$, " Chem. Eng. J., 164(1), 98-105(2010). https://doi.org/10.1016/j.cej.2010.08.036
  19. Li, Z., Meng, M., Dai, F., Hu, T., Xie, Y. and Zhang, J., "Performance of K and Ni Substituted $La_{1-x}K_xCo_{1-y}Ni_yO_{3-{\delta}}$ Perovskite Catalysts Used for Soot Combustion, $No_x$ Storage and Simultaneous $No_x$-soot Removal," Fuel, 93, 606-610(2012). https://doi.org/10.1016/j.fuel.2011.10.040

Cited by

  1. Enhancement of Combustive Removal of Soot at Low Temperatures (~ 150 °C) Using Ozone as an Oxidant and Potassium-Substituted Lanthanum Manganite as a Catalyst vol.43, pp.5, 2018, https://doi.org/10.1080/01919512.2020.1839378