DOI QR코드

DOI QR Code

Preparation of Mesoporous Titanium Oxides by Template Synthesis and Phase Transition of TiO2 inside Mesoporous Silica

주형합성을 통한 메조포러스 TiO2 제조 및 실리카 메조포어 내부에서의 TiO2 상전이 거동 변화

  • Bang, Gyeong-Min (Department of Chemical engineering, Chonnam National University) ;
  • Kim, Young-Ji (Department of Chemical engineering, Chonnam National University) ;
  • Kim, Seung Han (Gwangju Science Academy for the Gifted) ;
  • Choi, Yerak (Gwangju Science Academy for the Gifted) ;
  • Lee, In Ho (Gwangju Science Academy for the Gifted) ;
  • Ko, Chang Hyun (Department of Chemical engineering, Chonnam National University)
  • 방경민 (전남대학교 화학공학과) ;
  • 김영지 (전남대학교 화학공학과) ;
  • 김승한 (과학영재학교 광주과학고등학교) ;
  • 최예락 (과학영재학교 광주과학고등학교) ;
  • 이인호 (과학영재학교 광주과학고등학교) ;
  • 고창현 (전남대학교 화학공학과)
  • Received : 2017.09.11
  • Accepted : 2017.10.16
  • Published : 2018.04.01

Abstract

To prepare mesoporous $TiO_2$ ($meso-TiO_2$) with anatase and rutile crystal structures, hydrothermal and template synthesis were used. $Meso-TiO_2$ with anatase structure was obtained by hydrothermal synthesis. The crystal structure of $meso-TiO_2$ by hydrothermal synthesis converted from anatase to rutile by simple heating at $600^{\circ}C$ and above. However, their mesopore structure collapsed due to phase transition. To prepare $meso-TiO_2$ with rutile structure, template synthesis method was applied using mesoporous silica KIT-6 as a template. Once we incorporated anatase $TiO_2$ inside mesopores of silica, the phase transition temperature of $TiO_2$ confined inside KIT-6 was much higher ($900^{\circ}C$) than that of free-standing $TiO_2$ ($600^{\circ}C$). The suppression of $TiO_2$ phase transition inside mesopores of KIT-6 is closely related with the interaction between $TiO_2$ surface and silica walls in KIT-6 because oxygen vacancy in $TiO_2$ is regarded as the starting point for phase transition. After removal of silica template by NaOH solution washing, $meso-TiO_2$ with mixed phase between anatase and rutile was obtained.

본 연구에서는 수열합성법과 주형합성법을 이용하여 메조포어를 지닌 $TiO_2$를 합성하였다. 수열합성법을 이용해서 anatase 구조의 메조포러스 $TiO_2$를 합성했다. Rutile 구조의 메조포러스 $TiO_2$를 제조하기 위해서 수열합성법으로 제조된 메조포러스 $TiO_2$$300^{\circ}C$부터 $700^{\circ}C$까지 소성시켰더니 $600^{\circ}C$부터 anatase에서 rutile 결정구조로 상전이가 일어났다. 하지만, 메조포어가 붕괴되었다. 메조포어을 지닌 $TiO_2$를 합성하기 위해서 메조포러스 실리카 KIT-6을 주형으로 사용하는 주형합성법을 사용하였다. 먼저 메조포어 내부에 $TiO_2$를 형성시키고 소성온도를 800, $900^{\circ}C$로 높여서 anatase에서 rutile로의 상전이 거동을 조사하였다. 수열합성을 통해 제조된 자유로운 상태의 메조포러스 $TiO_2$의 경우 $600^{\circ}C$에서 anatase에서 rutile로의 상전이가 일어났지만 제한된 공간인 메조포러스 기공 내부에 형성된 $TiO_2$의 경우 $800^{\circ}C$까지 가열하더라도 rutile구조로 상전이가 일어나지 않았고, $900^{\circ}C$로 소성시키자 일부의 anatase가 rutile로의 상전이가 일어나기 시작하였다. 이러한 상전이는 산소 빈자리의 형성에 의해서 일어나야 한다고 알려져 있지만 실리카 기공 내부에 형성된 $TiO_2$는 실리카 기공 표면이 산소 빈자리 형성을 방해해서 상전이가 억제되는 것으로 판단된다. $900^{\circ}C$의 높은 소성온도로 인해서 anatase와 rutile 구조가 섞여있으며 실리카 기공 내부에 형성된 $TiO_2$는 NaOH 수용액을 이용해서 주형인 KIT-6과 분리해서 메조포어를 지닌 $TiO_2$를 제조하였다.

Keywords

References

  1. Kim, S. H., Na, S. E., Kim, S. Y., Kim, S. S. and Ju, C. S., "The Effect of Additives on the Preparation of Nanosized $TiO_2$ Particles," Korean Chem. Eng. Res., 51(4), 426-431(2013). https://doi.org/10.9713/kcer.2013.51.4.426
  2. Daghrir, R., Drogui, P. and Robert, D., "Modified $TiO_2$ For Environmental Photocatalytic Applications: A Review," Ind. Eng. Chem. Res., 52(10), 3581-3599(2013). https://doi.org/10.1021/ie303468t
  3. Chang, H. K., Jang, H. D., Park, J. H., Cho, K. and Kil, D. S., "Fabrication and Characteriztion of Porous $TiO_2$ Powder by Aerosol Process," Korean Chem. Eng. Res., 46(3), 479-485(2008).
  4. Hur, J. Y., Lee, H. I., Park, Y. K., Joo, O. S., Bae, G. N. and Kim, J. M., "Reproducible Synthesis of Periodic Mesoporous $TiO_2$ Thin Flim," Korean Chem. Eng. Res., 44(4), 399-403(2006).
  5. Kim, S. H., Jeong, S. G., Na, S. E., Kim, S. Y. and Ju, C. S., "Preparation of $TiO_2$ Powder by Hydrothemal Precipitation Method and their Photocatalytic Properties," Korean Chem. Eng. Res., 51(2), 195-202(2013). https://doi.org/10.9713/kcer.2013.51.2.195
  6. Kim, S. M., Yun, T. K. and Hong, D. I., "Effect of Rutile Structure on $TiO_2$ Photocatalytic Activity," The Korean Chemical Society, 49(6), 567-574(2005). https://doi.org/10.5012/jkcs.2005.49.6.567
  7. Oh, K. S., Yang, J. C., Jung, K. T., Choi, S. C. and Shul, Y. G., "Low Temperature Synthesis of Rutile $TiO_2$ in Sol-Gel with Organic Additives," HWAHAK KONGHAK, 33(5), 544-550(1995).
  8. Longoni, G., Lissette, R., Cabreara, P., Polizzi, S., D'Arienzo, M., Mari, C. M., Cui, Y. and Ruffo, R., "Shape-Controlled $TiO_2$ Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties," Nano Letters, 17(2), 992-1000(2017). https://doi.org/10.1021/acs.nanolett.6b04347
  9. Li, W., Wang, F., Liu, Y., Wang, J., Yang, J., zhang, L., Ahmed A. Elzatahry, Al-Dahyan, D., Xia, Y. and Zhao, D., "General Strategy to Synthesize Uniform Mesoporous $TiO_2$/Graphene/Mesoporous $TiO_2$ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage," Nano Lett., 15(3), 2186-2193(2015). https://doi.org/10.1021/acs.nanolett.5b00291
  10. Lee, H. J., Park, N. K., Lee, T. J., Han, G. B. and Kang, M. S., "Effect of Particle Size and Structure of $TiO_2$ Semiconductor on Photoelectronic Efficienct of Dye-sensitized Solar Cell," Clean. Technology, 19(1), 22-29(2013). https://doi.org/10.7464/ksct.2013.19.1.022
  11. Iida, Y. and Ozaki, S., "Grain Growth and Phase Transformation of Titanium Oxide During Calcination," J. Amerian Ceramic Society, 44(3), 120-127(1961). https://doi.org/10.1111/j.1151-2916.1961.tb13725.x
  12. Mackenzie, K. J. D. and Melling, P. J., "The Calcination of Titania, II. Influence of Atmosphere on Crystal Growth in Anatase Powders," Trans. J. Br. Ceram. Soc., 73(6), 179-183(1974).
  13. Ha, C. S. and Park, S. S., "Adsorption of Various Metal Ions Using Mesoporous Materials," News & Info. for Chem. Eng., 30(1), 38- 42(2012).
  14. Jang, K. S., Cho, S. H., Song, M. G. and Kim, J. D., "Synthesis of Mesoporous $TiO_2$ Thin Films with Polypyrrole Nanoparticles by Ultrasonic-induced Polymerization," Korean Chem. Eng. Res., 46(4), 777-782(2008).
  15. Kang, M., Yi, S. H., Yie, J. E. and Kim, J. M., "Synthesis of Nanoporous Inorganic Materials Using Mesostructurd Carbon Template," Theories and Applications of Chem. Eng., 8(2), 2417- 2420(2002).
  16. Kang, J. P., Kim, S. T., Kim, H. S. and Kwon, Y. K., "Synthesis and Applications of Mesoporous Materials," Polymer Science and Technology, 15(3), 303-316(2004).
  17. Kim, J. M., "Preparation and Applications of Mesoporous Materials," Physics and High Technology, 13(7/8), 12-17(2004).
  18. Kim, H. J., Kwak, C. H., Suh, T. S. and Suhr, D. S., "Template Synthesis of Titania Nanostructures," HWAHAK KONGHAK, 40(3), 357-361(2002).
  19. Lee, C. M., Kim, J. W., Chang, H. W., Roh, K. M. and Jang, H. D., "Synthesis of Hollow Silica Particles from Soduim Silicate using Organic Template Particles," Korean Chem. Eng. Res., 53(1), 78-82(2015). https://doi.org/10.9713/kcer.2015.53.1.78
  20. W. B. Yue, X. X. Xu, J. T. S. Irvine, P. S. Attidekou, C. Liu, H. Y. He, and D. Y., "Mesoporous Monocrystalline $TiO_2$ and Its Solid-State Electrochemical Properties," Chem. Mater., 21, 2540- 2546(2009). https://doi.org/10.1021/cm900197p
  21. Kim, S. S., Hur, J. Y. and Kim J. M., "Fabrication of Dye-sensitized Solar Cell using Mesoporous $TiO_2$ Film," Advanced Engineering and Technology, 1(2), 251-254(2008).
  22. W. B. Yue, Chamnan Randorn, P. S. Attidekou, Zixue Su, John T. S. Irvine, and W. Zhou, "Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline $TiO_2$," Advanced Functional Materials, 19(17), 2826-2833(2009). https://doi.org/10.1002/adfm.200900658
  23. Yoshitake Masuda, Kazumi Kato, "Synthesis and Phase Transformation of $TiO_2$ Nano-crystals in Aqueous Solutions," The Japan Ceramic Society, 117(3), 373-376(2009). https://doi.org/10.2109/jcersj2.117.373