DOI QR코드

DOI QR Code

UV/O3 조사 시간에 따른 Sol-gel 공정 기반 CuO 박막 트랜지스터의 전기적 특성 변화

UV/O3 Process Time Effect on Electrical Characteristics of Sol-gel Processed CuO Thin Film Transistor

  • Lee, Sojeong (School of Electronics Engineering, Kyungpook National University) ;
  • Jang, Bongho (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Taegyun (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, Won-Yong (School of Electronics Engineering, Kyungpook National University) ;
  • Jang, Jaewon (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2018.02.26
  • 심사 : 2018.03.20
  • 발행 : 2018.03.31

초록

Sol-gel 공법을 이용하여, p-형 CuO 박막 트랜지스터를 제작하였다. 제작된 CuO 박막 트랜지스터는 copper (II) acetate monohydrate 를 전구체로 사용하였다. $500^{\circ}C$ 열처리 후에 형성된 전구체는 p-형 CuO 박막이 됨을 확인하였다. 또한 전구체를 형성하기 전 기판표면의 $UV/O_3$ 조사량에 따른 CuO 박막 트랜지스터의 전기적 특성변화에 대하여 연구하였으며, 600 초동안 $UV/O_3$를 조사한 경우 제작된 CuO 박막 트랜지스터는 $5{\times}10^{-3}\;cm^2/V{\cdot}s$ 의 이동도와 약 $10^2$의 온/오프 전류비를 보여주었다.

In this research, sol-gel processed CuO p-type thin film transistors were fabricated with copper (II) acetate monohydrate precursors. After $500^{\circ}C$ annealing process, the deposited thin films were fully converted into CuO. We investigated $UV/O_3$ process time effect on electrical characteristics of sol-gel processed CuO thin film transistors. After 600 sec $UV/O_3$ process, the fabricated CuO thin film transistor delivered field effect mobility in saturation regime of $5{\times}10^{-3}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^2$.

키워드

참고문헌

  1. R. A. street, "Thin film transistor," Advanced Materials, vol.21. no.20, pp.2007-2022, 2009.DOI:10.1002/adma.200803211
  2. K. K. Song, D. J. Kim, X. S. Li, T. W. Jun, Y. M. Jeong and J. H. Moon, "Solution processed invisible all-oxide thin film transistors," Journal of Material Chemistry, vol.19, no.46, pp.8881-8886, 2009.DOI:10.1039/B912554J
  3. G. Huang, L. Duan, G. Dong, D. Zhang and Y. Qiu, "High-mobility solution-processed tin oxide thin-film transistors with high-k alumina dielectric working in enhancement mode," ACS Applied Material and Interfaces, 6(23), pp. 20786-20794. 2014.DOI:10.1021/am5050295
  4. K. Nomura, H, Ohta, A. Takagi, T. Kamiya, M. Hirano and H. hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," nature, 432, pp. 488-492, Nov. 2004.DOI:10.1038/nature03090
  5. R. L. Hoffman, B. J. Norris and J. F. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol.82, no.5, pp.733-735, 2003.DOI:10.1063/1.1542677
  6. S. C. Wang, C. F. Yeh, C. K. Huang and Y. T. Dai, "Device transfer technology by backside etching (DTBE) for poly-Si thin-film transistors on glass/plastic substrate," Japanese Journal of Applied Physics, vol.42, pp.1044-1046, 2003.DOI: 10.1143/JJAP.42.L1044
  7. Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas and H. N. Alshareef, "Recent developments in p-type Oxide Semiconductor materials and devices," Advanced Materials, vol.28, no.20, pp. 3831-3892, 2016.DOI:10.1002/adma.201503080
  8. B. Balamurugan and B. R. Mehta, "Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation," Thin Solid Films, Vol.396, no.1-2, pp.90-96, 2001.DOI:10.1016/S0040-6090(01)01216-0
  9. C. Gu and J. K. Lee, "Patterning of amorphous-InGaZnO thin-film transistors by stamping of surface-modified polydimethylsiloxane," RCS Advances, no.49, 2016.DOI:10.1039/C6RA06264D
  10. H. Tavana, N. Petong, A. Hennig, K. Grundke and A. W. Neumann. "Contact angles and coating thickness," The Journal of Adhesion, vol.81, no.1, 2005.DOI:10.1080/00218460590904435