DOI QR코드

DOI QR Code

Robust Online Object Tracking via Convolutional Neural Network

합성곱 신경망을 통한 강건한 온라인 객체 추적

  • Gil, Jong In (Department of Computer and Communications Eng., Kangwon National University) ;
  • Kim, Manbae (Department of Computer and Communications Eng., Kangwon National University)
  • 길종인 (강원대학교 컴퓨터정보통신공학과) ;
  • 김만배 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2017.11.28
  • Accepted : 2018.01.24
  • Published : 2018.03.30

Abstract

In this paper, we propose an on-line tracking method using convolutional neural network (CNN) for tracking object. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. While conventional methods have been used to learn models by training samples offline, we demonstrate that a small group of samples are sufficient for online object tracking. In addition, we define a loss function containing color information, and prevent the model from being trained by wrong training samples. Experiments validate that tracking performance is equivalent to four comparative methods or outperforms them.

본 논문에서는 객체를 추적하기 위해 합성곱 신경망 모델을 이용한 온라인 추적 기법을 제안한다. 오프라인에 모델을 학습시키기 위해서는 많은 수의 훈련 샘플이 필요하다. 이러한 문제를 해결하기 위해, 학습되지 않은 모델을 사용하고, 실험 영상으로부터 직접 훈련 샘플을 수집하여 모델을 갱신한다. 기존의 방법들은 많은 훈련 샘플을 획득하여 모델의 학습에 사용하였지만, 본 논문에서는 적은 수의 훈련 샘플만으로도 객체의 추적이 가능함을 증명한다. 또한 컬러 정보를 활용하여 새로운 손실 함수를 정의하였고 이로부터 잘못 수집된 훈련 샘플로 인해 모델이 잘못된 방향으로 학습되는 문제를 방지한다. 실험을 통해 4가지 비교 방법과 동등하거나 개선된 추적 성능을 보임을 증명하였다.

Keywords

References

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet, "Color-Based Probabilistic Tracking", Computer Vision-ECCV, pp. 661-675, 2002
  2. D. Bruch and K. Takeo, "An Iterative Image Registration Technique with an Application to Stereo Vision", Int' Joint Conf. on Artificial Intelligence, pp. 674-679, Aug. 1981
  3. T. Carlo and K. Takeo, "Detection and Tracking of Point Features", Technical Report CMU-CS-91-132, 1991
  4. D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-Based Object Tracking", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5, pp. 564-577, May 2003 https://doi.org/10.1109/TPAMI.2003.1195991
  5. K. Lee, S. Ryu, S. Lee, and K. Park, "Motion based object tracking with mobile camera", Electronics Letters, Vol. 34, No. 3, pp. 256-258, 1998. https://doi.org/10.1049/el:19980176
  6. Y. Wu, J. Lim, and M. Yang, "Object Tracking Benchmark", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 37. No. 9, pp. 1834-1848, Sep. 2015 https://doi.org/10.1109/TPAMI.2014.2388226
  7. Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints", IEEE Conf. on Computer Vision and Pattern Recognition, pp. 49-56, 2010
  8. Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 34, No. 7, pp. 1409-1422, July 2012 https://doi.org/10.1109/TPAMI.2011.239
  9. B. Babenko, M. Yang, and S. Belongie, "Robust Object Tracking with Online Multiple Instance Learning", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 33, No. 8, pp. 1619-1632. Aug. 2011 https://doi.org/10.1109/TPAMI.2010.226
  10. H. Li, Y. Li, and F. Porikli, "DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking", IEEE Trans. on Image Processing, Vol. 25, No. 4, pp. 1834-1848, April 2016. https://doi.org/10.1109/TIP.2015.2510583
  11. K. Zhang, Q. Liu, and M. Yang, "Robust Visual Tracking via Convolutional Networks Without Training", IEEE Trans. on Image Processing, Vol. 25, No. 4, pp. 1779-1792, April 2016. https://doi.org/10.1109/TIP.2016.2531283
  12. X. Zhou, L. Xie, P. Zhang, and Y. Zhang, "An Ensemble of Deep Neural Networks for Object Tracking", IEEE Conf. on Image Processing, pp. 843-847, 2014.
  13. D. Comaniciu, V. Ramesh, and P. Meer, "Real-Time Tracking of Non-Rigid Objects using Mean Shift", IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 142-149, 2000.
  14. Y. Wu, J. Lim, and M. H. Yang, "Online object tracking: A bench-mark", IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2411-2418, 2013.
  15. H. Grabner, C. Leistner, and H. Bischof, "Semi-supervised On-Line Boosting for Robust Tracking", British Machine Vision Conf., Vol. 1, No. 5, pp. 6. 2006.