DOI QR코드

DOI QR Code

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • Received : 2018.01.25
  • Accepted : 2018.03.18
  • Published : 2018.03.25

Abstract

The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)

References

  1. Alavandar, S. and Nigam, M.J. (2008), "Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators", J. Comput. Commun. Contr., 3(3), 224-234. https://doi.org/10.15837/ijccc.2008.3.2391
  2. Alwi, H. and Edwards, C. (2014), "Robust fault reconstruction for linear parameter varying systems using sliding mode observers", J. Robust Nonlin. Contr., 24(14), 1947-1968. https://doi.org/10.1002/rnc.3009
  3. Anh, H.P.H. and Nam, N.T. (2012), "Novel adaptive forward neural MIMO NARX model for the identification of industrial 3-DOF robot arm kinematics", J. Adv. Robot. Syst., 9(4), 104. https://doi.org/10.5772/51277
  4. Badihi, H., Zhang, Y. and Hong, H. (2017), "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches", Appl. Energy, 201, 284-307. https://doi.org/10.1016/j.apenergy.2016.12.096
  5. Bouzrara, K., Garna, T., Ragot, J. and Messaoud, H. (2013), "Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and output", J. Contr., 86(3), 369-385. https://doi.org/10.1080/00207179.2012.732710
  6. Bouzrara, K., Garna, T., Ragot, J. and Messaoud, H. (2012), "Decomposition of an ARX model on Laguerre orthonormal bases", ISA Trans., 51(6), 848-860. https://doi.org/10.1016/j.isatra.2012.06.005
  7. Busawon, K.K. and Kabore, P. (2001), "Disturbance attenuation using proportional integral observers", J. Contr., 74(6), 618-627. https://doi.org/10.1080/00207170010025249
  8. Forrai, A. (2017), "System identification and fault diagnosis of an electromagnetic actuator", IEEE T. Contr. Syst. Technol., 25(3), 1028-1035. https://doi.org/10.1109/TCST.2016.2582147
  9. Gao, Z., Breikin, T. and Wang, H. (2008), "Discrete-time proportional and integral observer and observerbased controller for systems with both unknown input and output disturbances", Optim. Contr. Appl. Met., 29(3), 171-189. https://doi.org/10.1002/oca.819
  10. Gao, Z. and Ho, D.W. (2004), "Proportional multiple-integral observer design for descriptor systems with measurement output disturbances", IEE Proc. Contr. Theor. Appl., 151(3), 279-288. https://doi.org/10.1049/ip-cta:20040437
  11. Gao, Z., Ding, S.X. and Ma, Y. (2007), "Robust fault estimation approach and its application in vehicle lateral dynamic systems", Optim. Contr. Appl. Met., 28(3), 143-156. https://doi.org/10.1002/oca.786
  12. Gao, Z. and Wang, H. (2006), "Descriptor observer approaches for multivariable systems with measurement noises and application in fault detection and diagnosis", Syst. Control Lett., 55(4), 304-313. https://doi.org/10.1016/j.sysconle.2005.08.004
  13. Gao, Z., Shi, X. and Ding, S.X. (2008), "Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation", IEEE T. Syst. Man. Cy. B, 38(3), 875-880. https://doi.org/10.1109/TSMCB.2008.917185
  14. Gao, Z., Dai, X., Breikin, T. and Wang, H. (2008), "Novel parameter identification by using a high-gain observer with application to a gas turbine engine", IEEE T. Ind. Inform., 4(4), 271-279. https://doi.org/10.1109/TII.2008.2007802
  15. Gholizadeh, M. and Salmasi, F.R. (2014), "Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model", IEEE T. Ind. Electron., 61(3), 1335-1344. https://doi.org/10.1109/TIE.2013.2259779
  16. Han, X., Fridman, E. and Spurgeon, S.K. (2014), "Sampled-data sliding mode observer for robust fault reconstruction: A time-delay approach", J. Franklin Inst., 351(4), 2125-2142. https://doi.org/10.1016/j.jfranklin.2013.04.004
  17. Hartmann, A., Lemos, J.M., Costa, R.S., Xavier, J. and Vinga, S. (2015), "Identification of switched ARX models via convex optimization and expectation maximization", J. Process Contr., 28, 9-16. https://doi.org/10.1016/j.jprocont.2015.02.003
  18. Jami'in, M.A., Hu, J., Marhaban, M.H., Sutrisno, I. and Mariun, N.B. (2016), "Quasi-ARX neural network based adaptive predictive control for nonlinear systems", IEEJ Trans. Elect. Electron. Eng., 11(1), 83-90. https://doi.org/10.1002/tee.22191
  19. Jamshidpour, E., Poure, P. and Saadate, S. (2015), "Photovoltaic systems reliability improvement by realtime FPGA-based switch failure diagnosis and fault-tolerant DC-DC converter", IEEE T. Ind. Electron., 62(11), 7247-7255. https://doi.org/10.1109/TIE.2015.2421880
  20. Kang, M., Kim, J. and Kim, J.M. (2015), "An FPGA-based multicore system for real-time bearing fault diagnosis using ultrasampling rate AE signals" IEEE T. Ind. Electron., 62(4), 2319-2329. https://doi.org/10.1109/TIE.2014.2361317
  21. Khalastchi, E., Kalech, M. and Rokach, L. (2017), "A hybrid approach for improving unsupervised fault detection for robotic systems", Expert Syst. Appl., 81, 372-383. https://doi.org/10.1016/j.eswa.2017.03.058
  22. Koenig, D. (2005), "Unknown input proportional multiple-integral observer design for linear descriptor systems: Application to state and fault estimation", IEEE T. Autom. Contr., 50(2), 212-217. https://doi.org/10.1109/TAC.2004.841889
  23. Lafont, F., Balmat, J.F., Pessel, N. and Fliess, M. (2015), "A model-free control strategy for an experimental greenhouse with an application to fault accommodation", Comput. Electron. Agr., 110, 139-149. https://doi.org/10.1016/j.compag.2014.11.008
  24. Lopez-Estrada, F.R., Ponsart, J.C., Theilliol, D., Zhang, Y. and Astorga-Zaragoza, C.M. (2016), "LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV", J. Intell. Robot. Syst., 84(1-4), 163-177. https://doi.org/10.1007/s10846-015-0295-y
  25. Ngoc Son, N., Anh, H.P.H. and Thanh Nam, N. (2016), "Robot manipulator identification based on adaptive multiple-input and multiple-output neural model optimized by advanced differential evolution algorithm", J. Adv. Robot. Syst., 14(1), 1729881416677695.
  26. Salehifar, M., Arashloo, R.S., Eguilaz, M.M. and Sala, V. (2015), "FPGA based robust open transistor fault diagnosis and fault tolerant sliding mode control of five-phase PM motor drives", J. Power Electron., 15(1), 131-145. https://doi.org/10.6113/JPE.2015.15.1.131
  27. Siciliano, B. and Khatib, O. (2016), Springer Handbook of Robotics, Springer.
  28. Simani, S., Fantuzzi, C. and Patton, R.J. (2013), Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques, Springer Science & Business Media.
  29. Stavrou, D., Eliades, D.G., Panayiotou, C.G. and Polycarpou, M.M. (2016), "Fault detection for service mobile robots using model-based method", Autonom. Robot., 40(2), 383-394. https://doi.org/10.1007/s10514-015-9475-7
  30. Van, M., Franciosa, P. and Ceglarek, D. (2016), "Fault diagnosis and fault-tolerant control of uncertain robot manipulators using high-order sliding mode", Math. Probl. Eng.
  31. Wang, X., Li, X., Wang, J., Fang, X. and Zhu, X. (2016), "Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton", Inform. Sci., 327, 246-257. https://doi.org/10.1016/j.ins.2015.08.025
  32. Xia, X., Zhou, J., Xiao, J. and Xiao, H. (2016), "A novel identification method of Volterra series in rotorbearing system for fault diagnosis", Mech. Syst. Signal Pr., 66, 557-567.
  33. Zhang, K., Jiang, B., Cocquempot, V. and Zhang, H. (2013), "A framework of robust fault estimation observer design for continuous-time/discrete-time systems", Optim. Contr. Appl. Met., 34(4), 442-457. https://doi.org/10.1002/oca.2031
  34. Zhang, Q. and Besancon, G. (2008), "An adaptive observer for sensor fault estimation in a class of uniformly observable non-linear systems", J. Modell. Identific. Contr., 4(1), 37-43. https://doi.org/10.1504/IJMIC.2008.020998
  35. Zhang, K., Jiang, B. and Cocquempot, V. (2008), "Adaptive observer-based fast fault estimation", J. Contr. Autom. Syst., 6(3), 320-326.
  36. Zhang, J., Swain, A.K. and Nguang, S.K. (2013), "Robust sensor fault estimation scheme for satellite attitude control systems", J. Franklin Inst., 350(9), 2581-2604. https://doi.org/10.1016/j.jfranklin.2013.06.010