DOI QR코드

DOI QR Code

Dual Biocontrol Potential of the Entomopathogenic Fungus, Isaria javanica, for Both Aphids and Plant Fungal Pathogens

  • Kang, Beom Ryong (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Han, Ji Hee (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jeong Jun (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Young Cheol (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2018.06.18
  • Accepted : 2018.10.29
  • Published : 2018.12.31

Abstract

Dual biocontrol of both insects and plant pathogens has been reported for certain fungal entomopathogens, including Beauveria bassiana and Lecanicillum spp. In this study, we demonstrate, for the first time, the dual biocontrol potential of two fungal isolates identified by morphological and phylogenetic analyses as Isaria javanica. Both these isolates caused mortality in the greater wax moth, and hence can be considered entomopathogens. Spores of the isolates were also pathogenic to nymphs of the green peach aphid (Myzus persicae), with an $LC_{50}$ value of $10^7spores/mL$ 4 days after inoculation and an $LT_{50}$ of 4.2 days with a dose of $10^8spores/mL$. In vitro antifungal assays also demonstrated a strong inhibitory effect on the growth of two fungi that are pathogenic to peppers, Colletotrichum gloeosporioides and Phytophthora capsici. These results indicate that I. javanica isolates could be used as novel biocontrol agents for the simultaneous control of aphids and fungal diseases, such as anthracnose and Phytophthora blight, in an integrated pest management framework for red pepper.

Keywords

References

  1. Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. Mol Plant Pathol. 2018;19;2349-2359. https://doi.org/10.1111/mpp.12693
  2. Anderson AJ, Kim YC. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot. 2018;105:62-69. https://doi.org/10.1016/j.cropro.2017.11.009
  3. Jaber LR, Enkerli J. Fungal entomopathogens as endophytes: can they promote plant growth?. Biocontrol Sci Technol. 2017;27:28-41. https://doi.org/10.1080/09583157.2016.1243227
  4. Jaber LR, Ownley BH. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control. 2018;116:36-45. https://doi.org/10.1016/j.biocontrol.2017.01.018
  5. Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25:1007. https://doi.org/10.1038/nbt1325
  6. Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31:446-459. https://doi.org/10.1080/13102818.2017.1286950
  7. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43:237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001
  8. Wang X, Gong X, Li P, et al. Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules. 2018;23:169. https://doi.org/10.3390/molecules23010169
  9. Gibson DM, Donzelli BGG, Krasnoff SB, et al. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep. 2014;31:1287-1305. https://doi.org/10.1039/C4NP00054D
  10. Guo YX, Liu QH, Ng TB, et al. Isarfelin, a peptide with antifungal and insecticidal activities from Isaria felina. Peptides. 2005;26:2384-2391. https://doi.org/10.1016/j.peptides.2005.05.020
  11. Ownley BH, Gwinn KD, Vega FE. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. In: Roy HE, Vega FE, Chandler D, Goettel MS, Pell J, Wajnberg E, editors. The Ecology of Fungal Entomopathogens. Dordrecht: Springer Netherlands; 2010. p. 113-128.
  12. Ownley BH, Griffin MR, Klingeman WE, et al. Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol. 2008;98:267-270. https://doi.org/10.1016/j.jip.2008.01.010
  13. Wang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules. 2012;17:2367. https://doi.org/10.3390/molecules17032367
  14. Kavkova M, Curn V. Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathologia. 2005;159:53-63. https://doi.org/10.1007/s11046-003-0787-3
  15. Szentivanyi O, Varga K, Wyand R, et al. Paecilomyces farinosus destroys powdery mildew colonies in detached leaf cultures but not on whole plants. Eur J Plant Pathol. 2006;115:351-356. https://doi.org/10.1007/s10658-006-9011-x
  16. Huang Z, Hao Y, Gao T, et al. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl Microbiol Biotechnol. 2016;100:5491-5503. https://doi.org/10.1007/s00253-016-7308-z
  17. Jaber LR, Salem NM. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Sci Technol. 2014;24:1096-1109. https://doi.org/10.1080/09583157.2014.923379
  18. Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development . Am J Bot. 2012;99:101-107. https://doi.org/10.3732/ajb.1100136
  19. Sasan RK, Bidochka MJ. Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Can J Plant Pathol. 2013;35:288-293. https://doi.org/10.1080/07060661.2013.823114
  20. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. 2012;4392.
  21. Kim KD, Oh BJ, Yang J. Differential Interactions of a Colletotrichum gloeosporioides isolate with green and red pepper fruits. Phytoparasitica. 1999;27:97-106. https://doi.org/10.1007/BF03015074
  22. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323-1330.
  23. White TJ, Bruns TL,S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. San Diego: Academic Press; 1990, p. 315-322.
  24. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf). 1999;41:95-98.
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33:1870-1874. https://doi.org/10.1093/molbev/msw054
  26. D'Alessandro CP, Jones LR, Humber RA, et al. Characterization and phylogeny of Isaria spp. strains (Ascomycota: Hypocreales) using ITS1-5.8S-ITS2 and elongation factor 1-alpha sequences. J Basic Microbiol. 2014;54:S21-S31. https://doi.org/10.1002/jobm.201300499
  27. Gallou A, Serna-Dominguez MG, Berlanga-Padilla AM, et al. Species clarification of Isaria isolates used as biocontrol agents against Diaphorina citri (Hemiptera: Liviidae) in Mexico. Fungal Biol. 2016;120:414-423. https://doi.org/10.1016/j.funbio.2015.11.009
  28. Cabanillas HE, de Leon JH, Humber RA, et al. Isaria poprawskii sp. nov. (Hypocreales: Cordycipitaceae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly. Mycoscience. 2013;54:158-169. https://doi.org/10.1016/j.myc.2012.09.009
  29. Shamly V, Kali A, Srirangaraj S, et al. Comparison of microscopic morphology of fungi using lactophenol cotton blue (LPCB), iodine glycerol and congo red formaldehyde staining. J Clin Diagn Res. 2014;8:DL01-DDL2.
  30. Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265-267.
  31. Russell RM, Robertson JL. Programming probit analysis. Bull Entomol Soc Am. 1979;25:191.
  32. Hunter WB, Avery PB, Pick D, et al. Broad spectrum potential of Isaria fumosorosea against insect pests of citrus. Fla Entomol. 2011;94:1051. https://doi.org/10.1653/024.094.0444
  33. Xie L, Han JH, Kim JJ, et al. Effects of culture conditions on conidial production of the sweet potato whitefly pathogenic fungus Isaria javanica. Mycoscience. 2016;57:64-70. https://doi.org/10.1016/j.myc.2015.09.002
  34. Zhu H, Kim JJ. Susceptibility of the tobacco whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q to entomopathogenic fungi. Biocontrol Sci Techn. 2011;21:1471-1483. https://doi.org/10.1080/09583157.2011.636482
  35. Lee Y-S, Han JH, Kang BR, et al. Dibutyl succinate, produced by an insect-pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose. Pest Manag Sci. 2018. doi:10.1002/ps.5191.

Cited by

  1. Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185 vol.47, pp.1, 2018, https://doi.org/10.1080/12298093.2018.1562692
  2. Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens vol.103, pp.17, 2019, https://doi.org/10.1007/s00253-019-09997-4
  3. Efficacy of an Omani strain of Cordyceps javanica and its culture filtrate against whitefly (Bemisia tabaci) under laboratory conditions vol.13, pp.1, 2020, https://doi.org/10.1080/26895293.2020.1835742
  4. Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions vol.8, pp.None, 2020, https://doi.org/10.7717/peerj.9895
  5. Increased mortality of the European pepper moth Duponchelia fovealis (Lepidoptera:Crambidae) using entomopathogenic fungal consortia vol.177, pp.None, 2020, https://doi.org/10.1016/j.jip.2020.107503
  6. Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases vol.9, pp.12, 2018, https://doi.org/10.3390/plants9121746
  7. Endophytic Isaria javanica pf185 Persists after Spraying and Controls Myzus persicae (Hemiptera: Aphididae) and Colletotrichum acutatum (Glomerellales: Glomerellaceae) in Pepper vol.12, pp.7, 2021, https://doi.org/10.3390/insects12070631
  8. Early Physiological Response of Potato Plants to Entomopathogenic Fungi under Hydroponic Conditions vol.7, pp.8, 2021, https://doi.org/10.3390/horticulturae7080217
  9. Effects of Temperature and Culture Media Composition on Sporulation, Mycelial Growth, and Antifungal Activity of Isaria javanica pf185 vol.27, pp.3, 2018, https://doi.org/10.5423/rpd.2021.27.3.99
  10. Dual effects of entomopathogenic fungi on control of the pest Lobesia botrana and the pathogenic fungus Eutypella microtheca on grapevine vol.54, pp.1, 2018, https://doi.org/10.1186/s40659-021-00367-x