References
- Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell. 2010;9:847-859. https://doi.org/10.1128/EC.00319-09
- Kues U. From two to many: multiple mating types in Basidiomycetes. Fungal Biol Rev. 2015;29:126-166. https://doi.org/10.1016/j.fbr.2015.11.001
- Park H-O, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev. 2007;71:48-96. https://doi.org/10.1128/MMBR.00028-06
- Bardwell L, Cook JG, Inouye CJ, et al. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev Biol. 1994;166:363-379. https://doi.org/10.1006/dbio.1994.1323
- Tam A, Nouvet FJ, Fujimura-Kamada K, et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol. 1998;142:635-649. https://doi.org/10.1083/jcb.142.3.635
- Tam A, Schmidt WK, Michaelis S. The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor. J Biol Chem. 2001;276:46798-46806. https://doi.org/10.1074/jbc.M106150200
- Michaelis S, Barrowman J. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev. 2012;76:626-651. https://doi.org/10.1128/MMBR.00010-12
- Hrycyna CA, Clarke S. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae. Mol Cell Biol. 1990;10:5071-5076. https://doi.org/10.1128/MCB.10.10.5071
- He B, Chen P, Chen S-Y, et al. RAM2, an essential gene of yeast, and RAM1 encode the two polypeptide components of the farnesyltransferase that prenylates a-factor and Ras proteins. Proc Natl Acad Sci USA. 1991;88:11373-11377. https://doi.org/10.1073/pnas.88.24.11373
- Caldwell GA, Naider F, Becker JM. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev. 1995;59:406-422.
- Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev. 1998;62:55-70.
- Raper JR, Baxter MG, Ellingboe AH. The genetic structure of the incompatibility factors of Schizophyllum Commune: the A-factor. Proc Natl Acad Sci USA. 1960;46:833-842. https://doi.org/10.1073/pnas.46.6.833
- Riquelme M, Challen MP, Casselton LA, et al. The origin of multiple B mating specificities in Coprinus cinereus. Genetics. 2005;170:1105-1119. https://doi.org/10.1534/genetics.105.040774
- Fowler TJ, DeSimone SM, Mitton MF, et al. Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol Biol Cell. 1999;10:2559-2572. https://doi.org/10.1091/mbc.10.8.2559
- Fowler TJ, Mitton MF, Vaillancourt LJ, et al. Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics. 2001;158:1491-1503.
- Kues U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev. 2000;64:316-353. https://doi.org/10.1128/MMBR.64.2.316-353.2000
- Olesnicky NS, Brown AJ, Honda Y, et al. Selfcompatible B mutants in Coprinus with altered pheromone-receptor specificities. Genetics. 2000;156:1025-1033.
- Szabo Z, Tonnis M, Kessler H, et al. Structurefunction analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Mol Genet Genom. 2002;268:362-370. https://doi.org/10.1007/s00438-002-0756-4
- Ha BS, Kim SI, Ro HS. Isolation and characterization of monokaryotic strains of Lentinula edodes showing higher fruiting rate and better fruiting body production. Mycobiology. 2015;43:24-30. https://doi.org/10.5941/MYCO.2015.43.1.24
- Ha B, Kim S, Kim M, et al. Diversity of A mating type in Lentinula edodes and mating type preference in the cultivated strains. J Microbiol. 2018;56:416-425. https://doi.org/10.1007/s12275-018-8030-6
- Ha B, Moon YJ, Song Y, et al. Molecular analysis of B mating type diversity in Lentinula edodes. Sci Hortic. 2019;243:55-63. https://doi.org/10.1016/j.scienta.2018.08.009
- Wu L, van Peer A, Song W, et al. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene. 2013;531:270-278. https://doi.org/10.1016/j.gene.2013.08.090
- Kosted PJ, Gerhardt SA, Anderson CM, et al. Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet Biol. 2000;29:107-117. https://doi.org/10.1006/fgbi.2000.1191
- Diaz-Rodriguez V, Distefano MD. a-Factor: a chemical biology tool for the study of protein prenylation. Curr Top Pept Protein Res. 2017;18:133-151.
- Olesnicky NS, Brown AJ, Dowell SJ, et al. A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus. EMBO J. 1999;18:2756-2763. https://doi.org/10.1093/emboj/18.10.2756
- Heimel K, Scherer M, Vranes M, et al. The transcription factor Rbf1 is the master regulator for bmating type controlled pathogenic development in Ustilago maydis. PLoS Pathog. 2010;6:e1001035. https://doi.org/10.1371/journal.ppat.1001035
- Mead ME, Hull CM. Transcriptional control of sexual development in Cryptococcus neoformans. J Microbiol. 2016;54:339-346. https://doi.org/10.1007/s12275-016-6080-1
- Inada K, Morimoto Y, Arima T, et al. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics. 2001;157:133-140.
- O’Shea SF, Chaure PT, Halsall JR, et al. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics. 1998;148:1081-1090.
- Halsall JR, Milner MJ, Casselton LA. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics. 2000;154:1115-1123.
- Brown AJ, Casselton LA. Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet. 2001;17:393-400. https://doi.org/10.1016/S0168-9525(01)02343-5
- Yi R, Mukaiyama H, Tachikawa T, et al. A-mating type gene expression can drive clamp formation in the bipolar mushroom Pholiota microspore (Pholiota nameko). Eukaryot Cell. 2010;9:1109-1119. https://doi.org/10.1128/EC.00374-09
- Kajiwara S, Yamaoka K, Hori K, et al. Isolation and sequence of a developmentally regulated putative novel gene, priA, from the basidiomycete Lentinus edodes. Gene. 1992;114:173-178. https://doi.org/10.1016/0378-1119(92)90571-6
Cited by
- Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes vol.11, pp.5, 2018, https://doi.org/10.3390/genes11050506
- Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes vol.49, pp.6, 2018, https://doi.org/10.1080/12298093.2021.2001906