DOI QR코드

DOI QR Code

키토산 섬유를 담체로 이용한 라이소자임 효소의 고정화

Immobilization of Lysozyme from Hen Egg by Crosslinking Method onto Chitosan Non-woven

  • 이소희 (경상대학교 의류학과/기초과학연구소)
  • Lee, So Hee (Department of Clothing and Textiles/Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2018.11.27
  • 심사 : 2018.12.11
  • 발행 : 2018.12.27

초록

Immobilization of lysozyme on chitosan non-woven using glutaraldehyde(GA) was investigated. For this, 100 % chitosan non-woven was prepared as novel support for the enzyme immobilization. In addition, free lysozyme activity was examined depending on various pH and temperature by measuring time. Moreover, the optimum immobilization conditions depending on various pH, temperature, immobilization time and lysozyme concentration was evaluated. In addition, thermal stability and storage stability of immobilized lysozyme were measured. The characteristics of immobilized lysozyme was examined by FT-IR, surface morphology, and MTT assay. The results are follows: the optimal immobilization of lysozyme were pH 7.0, $25^{\circ}C$, lysozyme concentration 1.5 mg/ml, immobilization time 240 min. The immobilized lysozyme showed higher thermal stability than the free trypsin. The immobilized lysozyme activity was retained 80 % of its initial activity at $4^{\circ}C$ over 30 days of storage. The lysozyme was immobilized effectively on chitosan non-woven by observation of surface morphology.

키워드

OSGGBT_2018_v30n4_264_f0001.png 이미지

Figure 1. The effects of pH on the free lysozyme activity depending on time.

OSGGBT_2018_v30n4_264_f0002.png 이미지

Figure 2. The effect of temperature on the free lysozyme activity depending on time.

OSGGBT_2018_v30n4_264_f0003.png 이미지

Figure 3. The effects of pH on the immobilized lysozyme activity.

OSGGBT_2018_v30n4_264_f0004.png 이미지

Figure 4. The effects of temperature on the immobilized lysozyme activity.

OSGGBT_2018_v30n4_264_f0005.png 이미지

Figure 5.The effects of immobilization time on the immobilized lysozyme activity.

OSGGBT_2018_v30n4_264_f0006.png 이미지

Figure 7. The thermal stabilities of immobilized lysozyme.

OSGGBT_2018_v30n4_264_f0007.png 이미지

Figure 6. The effects of lysozyme concentration on the immobilized lysozyme activity.

OSGGBT_2018_v30n4_264_f0008.png 이미지

Figure 8.Storage stabilities of immobilized lysozyme.

OSGGBT_2018_v30n4_264_f0009.png 이미지

Figure 9. Antimicrobial effects of the lysozyme immobilized chitosan non-woven.

OSGGBT_2018_v30n4_264_f0010.png 이미지

Figure 10. Cell viability of the chitosan non-woven.

OSGGBT_2018_v30n4_264_f0011.png 이미지

Figure 11. FT-IR spectrometer of chitosan non-woven.

OSGGBT_2018_v30n4_264_f0012.png 이미지

Figure 12. FE-SEM analysis of the chitosan non-woven.

Table 1. Characteristics of chitosan non-woven

OSGGBT_2018_v30n4_264_t0001.png 이미지

Table 2. Properties of enzyme

OSGGBT_2018_v30n4_264_t0002.png 이미지

참고문헌

  1. S. Guedidi, Y. Yurekli, A. Deratani, P. Dejardin, C. Innocent, S. A. Altinkaya, S. Roudesli, and A. Yemenicioglu, Effect of Enzyme Location on Activity and Stability of Trypsin and Urease Immobilized on Porous Membranes by using Layer-by-layer Self-assembly of Polyelectrolytes, J. of Membrane Science, 365, 59(2010). https://doi.org/10.1016/j.memsci.2010.08.042
  2. R. Wu, B. H. He, G. L. Zhao, L. Y. Qian, and X. F. Li, Immobilization of Pectinase on Oxidized Pulp Fiber and its Application in Whitewater Treatment, Carbohydrate Polymers, 97, 523(2013). https://doi.org/10.1016/j.carbpol.2013.05.019
  3. R. O. Cristovao, S. C. Silverio, A. P. Tavares, A. I. Briqida, J. M. Loureiro, R. A. Boaventura, E. A. Macedo, and M. A. Coelho, Green Coconut Fiber: a Novel Carrier for the Immobilization of Commercial Laccase by Covalent Attachment for Textile Dyes Decolorization, World J. of Applied Microbiology and Biotechnology, 28, 2827(2012). https://doi.org/10.1007/s11274-012-1092-4
  4. C. Guerrero, C. Vera, and A. Illanes, Optimisation of Synthesis of Oligosaccharides Derived from Lactulose (fructosyl-galacto-oligosaccharides) with ${\beta}$-Galactosidases of Different Origin, Food Chemistry, 138, 2225(2013). https://doi.org/10.1016/j.foodchem.2012.10.128
  5. S. Kwon, W. R. Ryu, and M. H. Cho, Continuous Degradation of Azo Dye by Immobilized Laccase, Korean J. of Biotechnology and Bioprocess Engineering, 17, 189 (2002).
  6. N. K. Pazarlioglu, M. Sariisik, and A. Telefoncu, Treating Denim Fabrics with Immobilized Commercial Cellulases, Process Biochemistry, 40, 767(2005). https://doi.org/10.1016/j.procbio.2004.02.003
  7. M. Soleimani, A. Khani, and K. Najafzadeh, ${\alpha}$-Amylase Immobilization on the Silica Nanoparticles for Cleaning Performance towards Starch Soils in Laundry Detergents, J. of Molecular Catalysis B: Enzymatic, 74, 1(2012). https://doi.org/10.1016/j.molcatb.2011.07.011
  8. Q. Wang, X. Fan, Y. Hu, J. Yua, L. Cui, and P. Wang, Antibacterial Functionalization of Wool Gabric via Immobilizing Lysozymes, Bioprocess and Biosystems Engineering, 32, 633(2009). https://doi.org/10.1007/s00449-008-0286-5
  9. A. C. Paulo andG. M. Guebitz, "Textile Processingwith Enzymes", CRC Press, Cambridge, pp.19-24, 2003.
  10. D. H. Joung, "Introduction of Enzymology", Daekwang, Seoul, pp.91-130, 2008.
  11. H. R. Kim and H. Y. Seo, Enzymatic Hydrolysis of Polyamide Fabric by using Acylase, Textile Research J., 83, 1181(2013). https://doi.org/10.1177/0040517512471747
  12. J. Chang, I. H. Park, Y. S. Lee, S. Y. Chung, S. J. Fang, M. S. Chandra, and Y. L. Choi, Immobilization of ${\beta}$- Glucosidase from Exiguobacterium sp. DAU5 on ChitosanBead for Improved Enzymatic Properties, J. of Life Science, 20, 1589(2010). https://doi.org/10.5352/JLS.2010.20.11.1589
  13. A. Mandrich, C. M. A. Galvao, C. D. F. Jesus, R. C. Giordano, and R. L. C. Giordano, Immobilization of Trypsin on Chitosan Gels: Use of Different Activation Protocols and Comparison with Other Supports, International J. of Biological Macromolecules, 43, 54(2008). https://doi.org/10.1016/j.ijbiomac.2007.11.007
  14. J. A. Silva, G. P. Macedo, D. S. Rodrigues, R. L. C. Giordano, and L. R. B. Goncalves, Immobilization of Candida antarctica lipase B by Covalent Attachment on Chitosan-based Hydrogels using Different Support Activation Strategies, Biochemical Engineering J., 60, 16(2012). https://doi.org/10.1016/j.bej.2011.09.011
  15. G. Peng, C. Zhao, B. Liu, F. Ye, and H. Jiang, Immobilized Trypsin onto Chitosan Modified Monodisperse Microspheres: A Different Way for Improving Carrier's Surface Biocompatibility, Applied Surface Science, 258, 5543(2012). https://doi.org/10.1016/j.apsusc.2012.01.071
  16. M. Chellapandian and C. A. Sastry, Immobilization of Alkaline Protease on Nylon, Bioprocess Engineering, 11, 17(1994). https://doi.org/10.1007/BF00369610
  17. I. B. Romdhane, Z. B. Romdhane, A. Gargouri, and H. Belghith, Esterification Activity and Stability of Talaromces thermophilus lipase Immobilized onto Chitosan, J. of Molecular Catalysis B: Enzymatic, 68, 230 (2011). https://doi.org/10.1016/j.molcatb.2010.11.010
  18. M. N. V. R. Kumar, A Review of Chitin and Chitosan Applications, Reactive and Functional Polymers, 46, 1(2000). https://doi.org/10.1016/S1381-5148(00)00038-9
  19. V. R. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, and S. Dhawan, Chitosan Microspheres as a Potential Carrier for Drugs, International J. of Pharmaceutics, 274, 1(2004). https://doi.org/10.1016/j.ijpharm.2003.12.026
  20. Y. J. Kim, Medical Textile Material Development Trends, Dyeing and Finishing, 5, 1(2010).
  21. S. Sinha, S. R. Dhakate, P. Kumar, R. B. Mathur, P. Tripathi, and S. Chand, Electrospun Polyacrylonitrile Nanofibrous Membranes for Chitosanase Immobilization and its Application in Selective Production of Chitoologosaccharides, Bioresource Technology, 115, 152 (2012). https://doi.org/10.1016/j.biortech.2011.11.101
  22. S. P. Lee, S. W. Kim, E. S. Sohn, and J. S. Kang, Technology TrendAnalysis of Chitosan, J. of Chitin and Chitosan, 8, 193(2003).
  23. S. H. Lee, H. R. Kim, B. H. Lee, and W. S. Song, Enzymatic Hydrolysis of Chitosan Fiber using Cellulase and Papain, Textile Science and Engineering, 47, 212(2010).
  24. L. Li and Y. Hsieh, "Lipase Immobilization on Ultrafine Poly(acrylic acid)-poly(vinyl alcohol) Hydrogel Fibers, Polymer Biocatalysis and Biomaterials II", ACS Publications, Washington D. C., pp.129-143, 2008.
  25. N. Bhardwaj and S. C. Kundu, Electrospinning: a Fascinating Fiber Fabrication Technique, Biotechnology Advances, 28, 325(2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
  26. H. Jia, Enzyme-carrying Electrospun Nanofibers, Methods in Molecular Biology, 743, 205(2011).
  27. W. Li, B. Chen, and T. Tan, Comparative Study of the Properties of Lipase Immobilized on Nonwoven Fabric Membranes by Six Methods, Process Biochemistry, 46, 1358(2011). https://doi.org/10.1016/j.procbio.2011.03.005
  28. S. A. Mohamed, A. S. Aly, T. M. Mohamed, and H. A. Salah, Immobilization of Horseradish Peroxidase on Nonwoven Polyester Fabric Coated with Chitosan, Applied Biochemistry and Biotechnology, 144, 169(2008). https://doi.org/10.1007/s12010-007-8026-x
  29. J. V. Edwards, N. Prevost, B. Condon, K. Sethumadhavan, J. Ullah, and A. Bopp, Immobilization of Lysozyme on Cotton Fabrics: Synthesis, Characterization, and Activity, AATCC Reveiw, 11, 73(2011).
  30. B. Krajewsja, Application of Chitin-and Chitosan-based Materials for Enzyme Immobilizations: a Review, Enzyme and Microbial Technology, 35, 126(2004). https://doi.org/10.1016/j.enzmictec.2003.12.013
  31. C. M. Gucbilmez, A. Yemenicioglu, and A. Arslanoglu, Antimicrobial Antioxidant Activity of Edible Zein Films Incorporated with Lysozyme, Albumin Proteins and Disodium EDTA, Food Research International, 40, 80 (2007). https://doi.org/10.1016/j.foodres.2006.08.007
  32. L. Betancor, F. Lopez-Gallego, N. A. Morales, G. Dellamora, C. Mateo, R. F. Lafuente, and J. M. Guisan, "Immobilization of Enzymes and Cells", Humana Press Inc., New-Jersey, pp.57-64, 2007.
  33. Z. X. Lian, Z. S. Ma, J. Wei, and H. Liu, Preparation and Characterization of Immobilized Lysozyme and Evaluation of its Application in Edible Coatings, Process Biochemistry, 47, 201(2012). https://doi.org/10.1016/j.procbio.2011.10.031
  34. D. Shugar, The Measurement of Lysozyme Activity and the Ultra-violet Inactivation of Lysozyme, Biochimica et Biophysica Acta, 8, 302(1952). https://doi.org/10.1016/0006-3002(52)90045-0
  35. R. C. Davies, A. Neuberger, and B. M. Wilson, The Dependence of Lysozyme Activity on pH and Ionic Strength, Biochimica et Biophysica Acta-Enzymology, 178, 294(1969). https://doi.org/10.1016/0005-2744(69)90397-0
  36. P. Monsan, Influence of the Conditions of Trypsin Immobilization onto Spherosil on Coupling Efficiency, European J. of Applied Microbiology and Biotechnology, 5, 1(1978). https://doi.org/10.1007/BF00515681
  37. K. Shin, T. J. Kim, Y. K. Kim, and Y. S. Kim, Immobilization of Cellulase from Fomitopsis Pinicola and their Changes of Enzymatic Characteristics, Mokchae Konghak, 38, 251(2010).
  38. F. Xi, J. Wu, Z. Jia, and X. Lin, Preparation and Characterization of Trypsin Immobilized on Silica Gel Supported Macroporous Chitosan Bead, Process Biochemistry, 40, 2833(2005). https://doi.org/10.1016/j.procbio.2004.12.013
  39. J. S. Kim, S. H. Lee, and W. S. Song, Immobilization of Trypsin on Chitosan Non-woven using Glutaraldehyde, J. of Korean Society of Clothing and Textiles, 37, 852(2013). https://doi.org/10.5850/JKSCT.2013.37.7.852
  40. F. Y. Li, Y. J. Xing, andX. Ding, Immobilization of Papain on Cotton Fabric by Sol-gel Method, Enzyme and Microbial Technology, 40, 1692(2007). https://doi.org/10.1016/j.enzmictec.2006.09.007
  41. M. Monier and A. M. A. E. Sokkary, Modification and Characterization of Cellulosic Cotton Fibers for Efficient Immobilization of Urease, International J. of Biological Macromolecules, 51, 18(2012). https://doi.org/10.1016/j.ijbiomac.2012.04.019
  42. A. N. Zelenetskii, T. A. Akopova, N. R. Kildeeva, G. A. Vikhoreva, E. S. Obolonkova, andA. A. Zharov, Immobilization of Trypsin on Polysaccharides upon Intense Mechanical Treatment, Russian Chemical Bulletin, 52, 2073(2003). https://doi.org/10.1023/B:RUCB.0000009655.16601.96