Fig. 1. Observed data, prediction data MAPE value of simulation dataset having 0.05 error
Fig. 2. Observed data, prediction data and sMAPE value of Beijing temperature dataset.
Fig. 3. Beijing temperature dataset. Blue line is used for train dataset and orange line is used for test data set
Fig. 4. ARIMA Prediction of Beijing temperature dataset. Blue is observed and green is prediction
Fig. 5. MAPE and mMAPE evaluation of Beijing temperature dataset ARIMA prediction with scale
Fig. 6. Observed data, prediction data mMAPE value of simulation dataset having 0.05 error
Fig. 7. MAPE, sMAPE and sMAPE evaluation of Beijing temperature dataset ARIMA prediction with scale. Blue is observed, green is prediction, red is MAPE and yellow is mMAPE
Table 1. Beijing temperature data, predict value, MAPE value
Table 2. Beijing temperature data, predict value, sMAPE value
Table 3. Four comparison case of MAPE, sMAPE, mMAPE value
Table 4. Four comparison case of MAPE, sMAPE, mMAPE value
참고문헌
- Arnaud de Myttenaer et al., 2016, Mean Absolute Percentage Error for regression models, Neurocomputing, Vol. 192, pp. 38-48 https://doi.org/10.1016/j.neucom.2015.12.114
- Fumiya Akashi, Shuyang Bai, Murad S. Taqqu, 2018, Robust regression on stationary time series: a self-normalized resampling approach., JOURNAL OF TIME SERIESANALYSIS, 39, pp. 417-432 https://doi.org/10.1111/jtsa.12295
- Rob J Hyndman, George Athanasopoulos, 2014, Forecasting : principles and practice, OTexts, Heathmont, Vic, p. 291
- Rob J Hyndman, Anne B Koehler, 2006, Another look at measures of forecast accuracy, International journal of forecasting, 22(4), pp. 679-688 https://doi.org/10.1016/j.ijforecast.2006.03.001
- Ji, Y.M., Yoo, J.J., 2017, Intelligent IoT based building automatic control system, Magazine of the SAREK, Vol. 46, No. 7, pp. 32-40
- J. Scott Armstrong, Fred L. Collopy, 1992, Error measures for generalizing about forecasting methods: Empirical comparisons, International Journal of Forecasting, 8, pp. 69-80 https://doi.org/10.1016/0169-2070(92)90008-W
- Kim, S.I., Kim, H.Y., 2016, A new metric of absolute percentage error for intermittent demand forecasts, International Journal of Forecasting, Vol. 32, No. 3, pp. 669-679 https://doi.org/10.1016/j.ijforecast.2015.12.003
- Peter J. Huber, 1964, Robust Estimation of a Location Parameter, The Annals of Mathematical Statistics, Vol. 35, No. 1, pp. 73-101 https://doi.org/10.1214/aoms/1177703732
- Spyros Makridakis, 1993, Accuracy measures: theoretical and practical concerns, International Journal of Forecasting, Vol. 9, pp. 527-529 https://doi.org/10.1016/0169-2070(93)90079-3
- Spyros Makridakis, Michele Hibon, 1997, ARMA Models and the Box-Jenkins Methodology, Journal of forecasting, Vol. 16, pp. 147-163 https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
- Xuan Liang et al, 2015, Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating, Proc. R. Soc., Vol. 471, No. 2181, http://rspa.royalsocietypublishing.org/content/471/2182/20150257