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a b s t r a c t

Concerns over reliability assessments of the main components in nuclear power plants (NPPs) related to
aging and continuous operation have increased. The conventional reliability assessment for main com-
ponents uses experimental correlations under general conditions. Most NPPs have been operating in
Korea for a long time, and it is predictable that NPPs operating for the same number of years would show
varying extent of aging and degradation. The conventional reliability assessment does not adequately
reflect the characteristics of an individual plant. Therefore, the reliability of individual components and
an individual plant was estimated according to operating data and conditions. It is essential to reflect
aging as a characteristic of individual NPPs, and this is performed through prognostics. To handle this
difficulty, in this paper, the general path model/Bayes, a data-based prognostic method, was used to
update the reliability estimated from the generic database. As a case study, the authors consider the
aging for steam generator tubes in NPPs and demonstrate the suggested methodology with data ob-
tained from the probabilistic algorithm for the steam generator tube assessment program.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Concerns over reliability assessment of the main components in
nuclear power plants (NPPs) related to aging and continuous
operation have increased. Reliability assessments of the main
components in NPPs are performed using experimental correla-
tions and data from nondestructive tests and visual tests during
maintenance. The parameters in the experimental correlations,
obtained by performing experiments under general conditions,
however, do not adequately reflect the characteristics of individual
plants [1]. Therefore, the reliability of each component and each
plant was estimated according to operating data and conditions.
The prognostics method estimates the reliability of the components
by using data obtained from monitoring and failure data related to
the same components [2].

For a detailed interpretation of the prognostics approach, con-
dition-based maintenance (CBM) and prognostics and health
management (PHM) are explained in advance. Fig.1 shows the CBM
and PHM cycles [2]. As can be seen in Fig. 1, although the CBM and
PHM are comprehensive technology, they differ depending on
whether they consider current operating conditions. Here, current
operating conditions refer to historical data and operating

conditions (run-time data) of target components or systems. More
specifically, the CBM considers current conditions (current state)
and fault/failure conditions to determine the current fault/failure
mode and effect. It can be used to schedule required repair and
maintenance. The PHM includes the CBM and a prognostics
method. The PHM refers specifically to the phase involved with
predicting future behavior, including remaining useful lifetime
(RUL), in terms of specific data for current operating conditions
(run-time data) and components (or plant), and then required
maintenance actions to maintain system health are scheduled.

Prognostics methods can be distinguished as physics-based or
data-based. The physics-based methods are based on first princi-
ples when the underlying physical mechanisms of the components
and systems are known. The physics-based methods are attractive
for engineering systems because they explicitly account for the
mechanical, material, and operational characteristics. In contrast,
data-basedmethods are developed based on historical datawith no
explicitly defined understanding of the underlying physical
mechanisms of the components or systems. The steam generator
makes the steam by transferring heat from the reactor coolant to
the feedwater. In addition, the steam generator performs as a
multibarrier by preventing leakage of radioactive materials in
events or accidents [3]. The steam generator tubes also have a key
safety structure in accidents in NPPs. Hence, it is worthwhile to
investigate a method to improve the reliability information of
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steam generator tubes by considering all available generic aswell as
component-specific data.

Through this research, it is applicable to integrating probabilistic
safety assessment (PSA) and prognostics. By applying the charac-
teristics of prognostics to the PSA, uncertainty in the PSA is reduced.
Recently, the concept of updating the PSA model using monitoring
and prognostics was proposed [4e9]. Fig. 2 shows the concept of
integrating prognostics and the PSA model. The PSA model usually
uses the event tree and fault tree (ET/FT) method. The main result of
the ET/FT method is a core damage frequency (CDF) in Level 1 PSA.
To calculate the CDF in the ET/FT method, reliability data such as the
time-of-failure (TOF) distribution are used. As shown in Fig. 2, the
upper side indicates the ET/FT method, and the position where the
reliability data are applied by the red circle and rectangle. The reli-
ability data can be updated using prognostics, which will reduce the
uncertainty of the PSA model because the uncertainty of the input
value of the ET/FT method is reduced. Hence, this method can reflect
the aging and dynamic effects by using the updated reliability data
with prognostics. In addition, it affects the areas that require a pe-
riodic update, such as the periodic safety review (PSR), the contin-
uous operation of NPPs, and risk-informed applications (RIAs).

In Chapter 2, the prognostics are explained in terms of the
general path model (GPM)/Bayes method, and the data-related

steam generator tubes are described in Chapter 3. The results of
steam generator tubes prognostics are explained in Chapter 4. In
Chapter 5, conclusions are described.

2. General path model/Bayes method

Although there are many prognostic methods, in this paper,
GPM/Bayes method is used to predict the integrity of the steam
generator tube. The GPM/Bayes method integrates the concepts of
GPM and the Bayesian linear regression (where prior information is
included), and is suggested in Ref. [10]. Thus, GPM and Bayesian
linear regression are respectively explained. The GPM was origi-
nally proposed as a statistical method to use degradation measures
to estimate the failure distribution for censored data [11]. The
original GPM assumes that the degradation physics for target
components is known. In addition, a two-stage method was pro-
posed, which made the general path including degradation infor-
mation. The general path was extrapolated to determine the
estimated failure times and to evaluate their distribution.

However, in the case of prognostics, there is a limitation in that
more accurate physics of the failure modes is required. Although
such models help with understanding of degradation mechanisms,
theymay not be strictly necessary for RUL estimation. Some studies

Fig. 1. The CBM and PHM cycles.
CBM, condition-based maintenance; FMECA, Failure modes, effects, and criticality analysis; PHM, prognostics and health management.
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on overcoming several limitations of the original GPM have been
conducted by other authors [12,13]. In the GPM/Bayes method, the
degradation path is assumed as an increasing function, and the
general path is established by using Bayesian linear regression. It is
not necessarily a linear model. In this paper, GPM/Bayes assumes
that the degradation path is fitted to linear, quadratic, and expo-
nential equations. Fig. 3 shows the concept of the GPM/Bayes for
prognostics [14]. In the GPM/Bayes method, a general path was
made from the failure information (indicated as “failure path” in
Fig. 3).

Bayesian linear regression is one of the Bayesian update
methods, where the prior distribution is updated with newly ac-
quired data to generate a posterior distribution of the model pa-
rameters [15e17]. The Bayesian linear regression model of GPM/
Bayes is explained through the following steps. The concept of
prognostics involves using failure data and monitoring data of the
target component to extrapolate the RUL.

In the first step, prior data to make the general path are calcu-
lated by interpolation using the failure data. Eq. (1)e(3) express the
general linear regression model. After the projection information is

obtained using the failure data, the projection information becomes
the prior information in the Bayesian linear regression [18,19].
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where X is an m � n matrix of m observation variables and n pre-
dictor variables; Y is an m � 1 matrix of the response variable; ε is
the random fluctuation or error; ε is independent and normally
distributed with mean 0 and variance s2. In other words, Y is
independently and normally distributedwithmean XВ and variance

Fig. 2. Concept of the integration of the prognostics and PSA model.
PSA, probabilistic safety assessment.
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s2. B is an n � 1 vector of regression coefficients and unknown pa-
rameters. B is the prior information and is calculated using Eq. (3).

b � N
�
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X*TS*�1Y*; posterior (7)

In the next step, predictions are made using Eqs. (4)e(7), which
append the prior information (Eq. (3)) to the monitoring data. X*
should be appended with an additional row with a value of 1 at the
last position and zeros elsewhere. Y* should be appended with the
prior value. S* is the varianceecovariance noise matrix, which in-
dicates the accuracy of each entry in the Y-vector. The var-
ianceecovariance matrix is augmented with a final row and a final
column of zeros, and the variance of the prior information is the
diagonal element. The linear regression model is not necessarily a
linear model, but is linear in parameters. Finally, bb is the posterior
information (i.e., reparameterized data) obtained using Eq. (7). To
calculate the RUL and its uncertainties, extrapolationwith posterior
information is carried out and Monte Carlo simulation (MCS) is
used to estimate the uncertainty.

The framework of GPM/Bayes for prognostics is illustrated in
Fig. 4. As can be seen in Fig. 4, the framework of GPM/Bayes for
prognostics consists of a training section and a test section. In the
training section, as mentioned earlier, training data are fitted to the
assumed equation and the threshold values are calculated. The
threshold values are calculated by obtaining the lower 5% value of
the last points. The last process in the training section is to obtain
prior information through GPM/Bayes. After the training section, in
the test section, GPM/Bayes is performed again using the fitted
equation, threshold value, and prior equation. The GPM/Bayes re-
sults are posterior information that contains themeasured data and
are used in an MCS to estimate the uncertainty [20e22].

3. Steam generator tube aging data

The steam generator tubes are likely to be damaged to a higher
degree than other components because of their low thickness,
which is necessary for increasing the heat transfer rate. In the case

Fig. 3. The concept of the GPM/Bayes for prognostics.
GPM, general path model.

Fig. 4. Framework of GPM/Bayes for prognostics.
GPM, general path model; RUL, remaining useful lifetime; TOF, time-of-failure.
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of the Optimized Power Reactor 1000, which is the standard NPP in
Korea, two steam generators are installed; a single one has about
10,000 tubes. As the steam generator is a key component in NPPs, it
is designed having a 10% margin of tubes because there can be no
replacement during the design life time.

There are many types of degradation mechanisms for steam
generator tubes. By the end of the 1970s, thinningwas known as the
most important degradation mechanism; however, stress corrosion
cracking has since been recognized as a major factor. Stress corro-
sion cracking has often been reported in actual incidents in domestic
and foreign plants [23]. Structural integrity and burst integrity of
steam generator tubes are required to prevent leakage of radioactive
materials from the primary side. Damage to steam generator tubes is
the initiating event of steam generator tube rupture, which is known
as a significant accident in NPPs. In this paper, burst probability,
which is used for probabilistic fracturemechanics, was considered to
estimate the integrity of the steam generator tube. In fact, the burst
pressure (PB) or the burst probability, which is the ratio of the
estimated PB to the threshold pressure, is one of the metrics used to
evaluate the integrity of steam generator tubes. To estimate such
metric, many conditions, various properties, and complex models
are necessary and integrated.

In this study, a probabilistic assessment for an outside axial
crack was conducted according to the probabilistic algorithm for
steam generator tube assessment (PASTA) program [24]. PASTA is a
Windows program based on an optimized probabilistic integrity
assessment method to evaluate the integrity of steam generator
tubes. The algorithm for calculating PB for consideration of a
probabilistic axial external crack is illustrated in Fig. 5 and in the PB
equation [25]. Structural integrity assessment for steam generator
tubes was performed through three steps.

In the first step, a degradation assessment is performed as a
preliminary analysis before performing the in-service inspection of
the steam generators. In the second step, condition monitoring
assessment is performed to check whether the performance criteria
of steam generators are satisfied during the previous period. In the
final step, an operational assessment is performed to determine
whether the performance criteria of steam generators will remain
satisfied until the next inspection period. In this step, the equation
considering the probabilistic theory determines the PB of the outer
cracks in the axial direction. Themathematical model for calculating
the PB is based on the results of the burst test for large-scale

ruptures of various sizes, derived from engineering analyses such as
regression analysis. The PB is expressed as Eq. (8) [25].

PB ¼ 0:58
�
Sy þ Su

� t
Ri

�

1� L
Lþ 2t

h
�

(8)

where Sy is the yield strength, Su is the tensile strength, Ri is the
inner radius, L is the crack length, t is the thickness, h is the crack
thickness ratio ð¼ d=tÞ, and d is the crack thickness.

For actual application, to reduce the measurement error, each
variable was preprocessed before being applied to Eq. (8). In this

Fig. 5. Algorithm for calculating burst pressure.
BOC, beginning of cycle; EFPY, effective full power years; EOC, end of cycle; NDE, non destructive examination.

Fig. 6. The burst probability of training set.
EFPY, effective full power years.

Table 1
Summary of training results.

Description Results

Equation b2x2 þ b1xþ b0
Prior (b)

�
0:002873 �0:01552 0:01616
0:000194 0:003745 0:0062

�

Variance ðSÞ 0.000321
Threshold value 0.330839

H. Kim et al. / Nuclear Engineering and Technology 50 (2018) 88e9692



paper, preprocessed variables were used. MCS was performed to
calculate each crack growth sizewhen the PB reached the threshold
pressure. The burst probability was obtained from the ratio of the
number of PBs below the threshold pressure and the MCS number.

The total number of tubes is 250; all burst probability values
are propagated using the abovementioned procedure. For the
prognostics data set, it is assumed that a new crack does not
occur during the simulation. In practice, when the burst proba-
bility is near 0.4 at the overhaul, tube plugging is performed.
Thus, the threshold value was set to the value of effective full
power years (EFPY) before the PB exceeded 0.4. The data set is
arbitrarily separated into categories of training and testing; the
latter is the data set used for validation. The training set is 80% of
the data set and the remainder is used for the test set. Thus, data
of 200 cracks were used for the training set (failure data) and
data of the remaining 50 cracks (unfailed data, which means

failure not occurred) were used for testing. Fig. 6 shows the
training set.

4. Results

As previously mentioned, the data set is arbitrarily separated
into training and test data sets, where the latter data set is used for
validation. The training set is 80% of the data set and the
remainder is used for the test set. Thus, data of 200 cracks were
used for the training set (failure data) and data of the remaining
50 cracks (unfailed data) were used for testing. Training data are
regarded as failure data, such as generic data in conventional
reliability assessment. Test data are regarded as measured data or
real-time operating data, and are used to show the effect of
updating measured data, and test data will be separated by 3 EFPY
intervals.

Fig. 7. The results of GPM/Bayes for each part.
EFPY, effective full power years; GPM, general path model.
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For using GPM/Bayes, the parameters of each failure data were
determined by regressing failure data. The threshold value is found
using failure data. By multiplying the last value of failure data with
the parameter found during fitting, where a user determines
quantile values conservatively, the 95% quantile value is deter-
mined in this paper. After determining the fitting function and the
threshold value of the failure data, the prior parameter should be
identified.

The GPM/Bayes was performed by using training data and the
results are summarized in Table 1. In Table 1, as previously
mentioned, the degradation path assumes a monotonically
increasing equation and steam generator tube aging data were
optimized with a quadratic equation. In addition, the prior was
calculated using Eq. (3) in Chapter 2. The variance was residual
from fitted data and training data, and the threshold value is
calculated by the lower 5%.

To show how to update RUL and improve the reliability using
the monitoring data, the test set is classified into four parts. Each
part was calculated based on EFPY, and 1 EFPY was 18 months. Part
1was 3 EFPY, Part 2was 6 EFPY, Part 3 was 9 EFPY, and Part 4 was 12
EFPY. An uncertainty analysis was also performed. There are many

types of uncertainty, such as uncertainty in parameters, measure-
ment noise, and failure threshold. In this paper, only the parameter
uncertainty is considered. Although the measurement noise is
handled in preprocessing to calculate the burst probability to
reduce its effect, the parameter uncertainty includes information of
the measurement noise because the parameter is calculated using
measurement values. We assume that the uncertainty can be
combined. Eq. (9) was used to quantify the uncertainty, where the
parameters were assumed to follow a normal distribution with a
95% confidence interval.

b2
h
bbm � tn�1;a=2

bbs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p
; bbm þ tn�1;a=2

bbs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p i
(9)

Fig. 7 shows the results of GPM/Bayes for one case at each
part. In Fig. 7, the circles and the solid line connecting those
circles are test data (measured data): the horizontal line at 0.33
shows the threshold value, and the dashed lines are predicted
values and uncertainty bands determined using the GPM/Bayes
method. The uncertainty of data combined into an uncertainty
band using the GPM/Bayes method is expressed as the difference
between data and predicted values from training data. Part 1 had

Fig. 8. The histogram of GPM/Bayes for each part.
EFPY, effective full power years; GPM, general path model.
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lower accurate RUL with high uncertainty compared with others
because the size of the initial crack was not large, which means
less predictable.

For providing the different view of the concept of prognostics, a
histogram is constructed depending on the monitoring data in
Fig. 8. To make the histogram, 1,000 simulations were performed;
they represented the same tube as that shown in Fig. 7. The

threshold value was 12.5 EFPY, and is indicated as a dashed vertical
line. In addition, Table 2 shows the RUL error mean and standard
deviation for each part based on Eq. (10). As previously explained
and shown in Fig. 8 and Table 2, as more observation data become
available, better predictions can be achieved. The error ε is defined
as follows:

ε ¼ tr � tp
tr

� 100 (10)

where tr is the measured data and tp is the predicted data.
The root mean square (RMS) is obtained for each crack and each

part. The RMS results are shown in Fig. 9. In addition, the RMS is
defined as follows:

Fig. 9. RMS results for each crack.
EFPY, effective full power years; RMS, root mean square.

Fig. 10. Representative cases for grouping of RMS results.
RMS, root mean square.

Table 2
RUL error mean and standard deviation of each part.

- EFPY3 EFPY6 EFPY9 EFPY 12

Mean 5.15 4.026 1.782 0.335
Standard deviation 3.084 3.173 1.366 0.256

EFPY, effective full power years; RUL, remaining useful lifetime.
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where tr;i is the ith measured data and tp;i is the ith predicted data.
As previously mentioned, because the GPM/Bayes method uses

the monitoring method, the RMS results decrease as shown in
Fig. 9. However, there are two graph trends in Fig. 9; in addition,
Fig. 10 shows representative cases that indicate the two trends for
grouping of RMS results. One trend is the decrease between 6 EFPY
and 9 EFPY, and the other trend is the decrease between 3 EFPYand
6 EFPY. The two trends are not different from each other because
they are decided by the initial crack condition. If the crack growth
condition is satisfied at 3 EFPY, the decreasing trend between 3
EFPY and 6 EFPY appears. If the crack growth condition is not
satisfied at 3 EFPY, the crack growth propagates to 6 EFPY tomature
crack growth condition. Thus, the trend appears almost flat be-
tween 3 EFPY and 6 EFPY and decreasing between 6 EFPY and 9
EFPY.

5. Conclusions

In this paper, using the data-based GPM/Bayes, a prognostic
method was used to predict the integrity of a steam generator tube.
Most NPPs have been operating in Korea for a long time, and it can
be predicted that NPPs operating for the same number of years
would undergo a varying extent of aging and degradation. It is thus
essential to reflect aging as a characteristic of each NPP, and this is
performed through prognostics. The suggested method is supple-
mentary to a conventional assessment using experimental corre-
lations under general conditions, and it is able to reflect aging by
calculating plant-specific data for the reliability assessment by
virtue of prognostic method characteristics. Themain characteristic
of the suggested method is that the model accuracy is increased by
gathering monitoring data.

From this research, some practical issues arise. The first is the
absence of data. In the case of NPPs, it is difficult to obtain real-time
and on-line monitoring data because of the harsh environment.
Furthermore, the level of difficulty in observing fault symptoms is
comparatively higher for passive components than for active
components comparatively because of the nature of the fault
mechanism. Thus, obtaining of real-time data should be performed
for better health management of NPPs. The second limitation is
how to find the best parametric model. In this paper, the degra-
dation path assumed a monotonically increasing function, such as a
quadratic, linear, or exponential function. Third, there is a problem
of determining the failure threshold from data. Because, to prevent
accidents, NPPs operate with high conservatism, it is difficult to
determine an accurate threshold value. Also, there may be some
machines or systems that do not have an accurate failure threshold.
Finally, there is an issue of how to quantify uncertainty. As
mentioned earlier, there are many types of uncertainty such as that
regarding measurement noise, parameters, and failure threshold.
However, in this paper, only parameter uncertainty is considered.
For further study, and more accurate estimation, all sources of
uncertainty should be quantified.

This research shows the possibility of application to prognostics
for NPPs. For further study, a methodology may be suggested using
the present results. It would be helpful to estimate the RUL for

components and systems by considering the characteristics of each.
Moreover, these results are applicable to PSA.
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