DOI QR코드

DOI QR Code

Isolation and expression analysis of stimulator of interferon gene from olive flounder, Paralichthys olivaceus

  • Ma, Jeong-In (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • Kang, Sunhye (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • Jeong, Hyung-Bok (Fish Vaccine Research Center, Jeju National University) ;
  • Lee, Jehee (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
  • Received : 2017.11.01
  • Accepted : 2018.01.10
  • Published : 2018.03.31

Abstract

Stimulator of interferon gene (STING) is induced by various inflammatory agents, such as lipopolysaccharide and microbial pathogens, including virus and bacteria. In this study, we obtained a full-length cDNA of a STING homolog from olive flounder using rapid amplification of cDNA ends PCR technique. The full-length cDNA of Paralichthys olivaceus STING (PoSTING) was 1442 bp in length and contained a 1209-bp open reading frame that translated into 402 amino acids. The theoretical molecular mass of the predicted protein sequence was 45.09 kDa. In the PoSTING protein, three transmembrane domains and the STING superfamily domain were identified as characteristic features. Quantitative real-time PCR revealed that PoSTING expressed in all the tissues analyzed, but showed the highest level in the spleen. Temporal expression analysis examined the significantly upregulated expression of PoSTING mRNA after viral hemorrhagic septicemia virus (VHSV) stimulation. In contrast, no significant changes in the PoSTING expression were detected in Edwardsiella tarda-challenged group compared to the un-injected control. The expression of P. olivaceus type I interferon (PoIFN-I) was also highly upregulated upon VHSV challenge. These results suggest that STING might be involved in the essential immune defense against viral infection together with the activation of IFN-I in olive flounder.

Keywords

References

  1. Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kB activation through TBK1. J Virol. 2014;88:5328-41. https://doi.org/10.1128/JVI.00037-14
  2. Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN. STING recognition of cytoplasmic DNA instigates cellular defense. Mol Cell. 2013;50:5-15. https://doi.org/10.1016/j.molcel.2013.01.039
  3. Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V, Rodriguez-Madoz JR, Mulder LC, Barber GN, Fernandez-Sesma A. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 2012;8:e1002934. https://doi.org/10.1371/journal.ppat.1002934
  4. Barber GN. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol. 2011;23:10-20. https://doi.org/10.1016/j.coi.2010.12.015
  5. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515-8. https://doi.org/10.1038/nature10429.
  6. Chen H, Sun H, You F, Sun W, Zhou X, Chen L, Yang J, Wang Y, Tang H, Guan Y, Xia W, Gu J, Ishikawa H, Gutman D, Barber G, Qin Z, Jiang Z. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell. 2011;147:436-46. https://doi.org/10.1016/j.cell.2011.09.022
  7. Einer-Jensen K, Ahrens P, Forsberg R, Lorenzen N. Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. J Gen Virol. 2004;85:1167-79. https://doi.org/10.1099/vir.0.79820-0
  8. Feng X, Yang C, Zhang Y, Peng L, Chen X, Rao Y, Gu T, Su J. Identification, characterization and immunological response analysis of stimulator of interferon gene (STING) from grass carp Ctenopharyngodon idella. Dev Comp Immunol. 2014;45:163-76. https://doi.org/10.1016/j.dci.2014.03.001
  9. Ge R, Zhou Y, Peng R, Wang R, Li M, Zhang Y, Zheng C, Wang C. Conservation of the STING-mediated cytosolic DNA sensing pathway in zebrafish. J Virol. 2015;89:7696-706. https://doi.org/10.1128/JVI.01049-15
  10. Huang Y, Ouyang Z, Wang W, Yu Y, Li P, Zhou S, Wei S, Wei J, Huang X, Qin Q. Antiviral role of grouper STING against iridovirus infection. Fish Shellfish Immunol. 2015;47:157-67. https://doi.org/10.1016/j.fsi.2015.09.014
  11. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674-8. https://doi.org/10.1038/nature07317.
  12. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788-92. https://doi.org/10.1038/nature08476.
  13. Jin L, Getahun A, Knowles HM, Mogan J, Akerlund LJ, Packard TA, Perraud AL, Cambier JC. STING/MPYS mediates host defense against Listeria monocytogenes infection by regulating Ly6C(hi) monocyte migration. J Immunol. 2013;190:2835-43. https://doi.org/10.4049/jimmunol.1201788
  14. Kim JS, Harikrishnan R, Kim MC, Balasundaram C, Heo MS. Dietary administration of Zooshikella sp. enhance the innate immune response and disease resistance of Paralichthys olivaceus against Sreptococcus iniae. Fish Shellfish Immunol. 2010;29:104-10. https://doi.org/10.1016/j.fsi.2010.02.022
  15. Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155:688-98. https://doi.org/10.1016/j.cell.2013.09.049
  16. Lumsden JS, Morrison B, Yason C, Russell S, Yong K, Yazdanpanah A, Huber P, Al-Hussinee L, Stone D, Way K. Mortality event in freshwater drum Aplodinotus grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicaemia virus. Type IV Dis Aquat Org. 2007;76:99-111. https://doi.org/10.3354/dao076099
  17. Mortensen HF, Heuer OE, Lorenzen N, Otte L, Olesen NJ. Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild marine fish species in the Baltic Sea, Kattegat, Skagerrak and the North Sea. Virus Res. 1999;63:95-106. https://doi.org/10.1016/S0168-1702(99)00062-3
  18. Nakhaei P, Hiscott J, Lin R. STING-ing the antiviral pathway. J Mol Cell Biol. 2010;2:110-2. https://doi.org/10.1093/jmcb/mjp048
  19. Schmitz M, Mandiki SN, Douxfils J, Ziv T, Admon A, Kestemont P. Synergic stress in striped catfish (Pangasianodon hypophthalmus, S.) exposed to chronic salinity and bacterial infection: effects on kidney protein expression profile. J Proteome. 2016;142:91-101. https://doi.org/10.1016/j.jprot.2016.04.046
  20. Schutze H, Mundt E, Mettenleiter TC. Complete genomic sequence of viral haemorrhagic septicaemia virus, a fish rhabdovirus. Virus Genes. 1999;19:59-65. https://doi.org/10.1023/A:1008140707132
  21. Sun F, Zhang YB, Liu TK, Shi J, Wang B, Gui JF. Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol. 2011;187:2531-9. https://doi.org/10.4049/jimmunol.1100642
  22. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009;106:8653-8. https://doi.org/10.1073/pnas.0900850106
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  24. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008;29:538-50. https://doi.org/10.1016/j.immuni.2008.09.003

Cited by

  1. Identification of Potential Immune-Related circRNA-miRNA-mRNA Regulatory Network in Intestine of Paralichthys olivaceus During Edwardsiella tarda Infection vol.10, pp.None, 2018, https://doi.org/10.3389/fgene.2019.00731