DOI QR코드

DOI QR Code

The relationship between fishing characteristics of Pacific bluefin tuna (Thunnus orientalis) and ocean conditions around Jeju Island

  • Received : 2017.09.20
  • Accepted : 2017.12.13
  • Published : 2018.01.31

Abstract

Pacific bluefin tuna (Thunnus orientalis) is one of the commercially important species in Korea as well as other countries of the North Pacific. Korean offshore large purse seine fisheries targeting small pelagic fishes such as chub mackerel have caught T. orientalis temporarily in the east of Jeju Island. The catch of T. orientalis in March through June occupied approximately 60% of the total. The monthly catch around Jeju Island from 2004 to 2013 showed a negative correlation (r = - 0.755, p < 0.01) with the seawater temperature at 50 m and had a significant positive correlation (r = 0.856, p < 0.01) with the Pacific Decadal Oscillation Index (PDOI). The highest catch and catch per unit effort (CPUE) of T. orientalis around Jeju Island occurred either when the seawater temperature ranged between 15 and $16^{\circ}C$ at 50 m or when the catch was taken near the frontal area where two water masses from offshore and coastal areas collide. The length of T. orientalis caught around Jeju Island from 2004 to 2013 ranged from 19 to 193 cm in fork length (FL). The time series of the monthly mean FL of T. orientalis had a negative correlation (r = - 0.592, p < 0.01) with the seawater temperature at 50 m and had a significant positive correlation (r = 0.668, p < 0.05) with PDOI.

Keywords

References

  1. Australian Bureau of Meteorology. 2013. The southern annular mode. Retrived from http://www.bom.gov.au/climate/enso/history/ln-2010-12/SAM-what.shtml. Accessed 15 Sept.
  2. Bayliff WH. A review of the biology and fisheries for northen bluefin tuna, Thynnus thynnus, in the Pacific Ocean. FAO Fish Tech Pap. 1994;336:244-95.
  3. Bell RR. Synopsis of biological date on California bluefin tuna Thynnus saliens Jordan and Evermann 1926. FAO Fish Rep. 1963;6(2):308-421.
  4. Brill RW, Lutcavage ME. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments. In: American Fisheries Society Symposium. American Fisheries Society. 2001. p. 179-198.
  5. Carey FG, Teal JM. Regulation of body temperature by the bluefin tuna. Comp Biochem Physiol. 1969;28(1):205-13. https://doi.org/10.1016/0010-406X(69)91336-X
  6. Chen KS, Crone P, Hsu CC. Reproductive biology of female Pacific bluefin tuna Thynnus orientalis from south-western North Pacific Ocean. Fish Sci. 2006;72(5):985-94. https://doi.org/10.1111/j.1444-2906.2006.01247.x
  7. Collette BB. Mackerels, molecules, and morphology. In: Proceedings of the 5th Indo-Pacific Fish Conference. Seret B and Sire JY, eds. Societe Francaise d'Ichtyologie, Paris, 1999;149-164.
  8. Deser C, Alexander MA, Xie SP, Phillips AS. Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci. 2010;2:115-43. https://doi.org/10.1146/annurev-marine-120408-151453
  9. Doi T. On the predatory relationships among bluefin tuna and coastal fishes in the southern waters of Japan. Bull Japan Soc Sci Fish. 1960;26(2):99-102. https://doi.org/10.2331/suisan.26.99
  10. Drinkwater KF. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci. 2005;62(7):1327-37. https://doi.org/10.1016/j.icesjms.2005.05.015
  11. FAO. Global Tuna Catches by Stock. 2010 Retrieved from http://www.fao.org/fishery/statistics/tuna-catches/en
  12. Fiedler PC, Bernard HJ. Tuna aggregation and feeding near fronts observed in satellite imagery. Cont Shelf Res. 1987;7(8):871-81. https://doi.org/10.1016/0278-4343(87)90003-3
  13. Graham JB, Dickson K. Tuna comparative physiology. J Exp Biol. 2004;207(23):4015-24. https://doi.org/10.1242/jeb.01267
  14. Harada T. Development and future outlook of studies on the aquaculture of tunas In: Maguro Gyogyo Kyogikai Gijiroku, Suisancho-Enyo Suisan Kenkyusho (Proceedings of the Tuna Fishery Research Conference). Japan Fisheries Agency-Far Seas Fisheries Research Laboratory, Simizu, 1980 6-7.
  15. Hollowed AB, Barange M, Ito S-I, Kim S, Loeng H, Peck MA. Effects of climate change on fish and fisheries: forecasting impacts, assessing ecosystem responses, and evaluating management strategies. ICES J Mar Sci. 2011;68(6):984-5. https://doi.org/10.1093/icesjms/fsr085
  16. IUCN. Red list of threatened species. Thunnus orientalis. 2014 Retrieved from http://www.iucnredlist.org/details/summary/170341/0
  17. Kida T. On the surface temperature of water in the tunny fishing grounds off Kusiro and Urakawa in summer. Bull Jap Soc Sci Fish. 1936;5(2):87-90. https://doi.org/10.2331/suisan.5.87
  18. Kim S, Kang S, Seo H, Kim E, Kang M. Climate variability and chum salmon production in the North Pacific. The Sea. 2007;12(2):61-72.
  19. Kitagawa T, Boustany AM, Farwell CJ, Williams TD, Castleton MR, Block BA. Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish Oceanogr. 2007;16(5):409-21. https://doi.org/10.1111/j.1365-2419.2007.00441.x
  20. Kitagawa T, Nakata H, Kimura S, Itoh T, Tsuji S and Nitta A. Effect of ambient temperature on the vertical distribution and movement of Pacific bluefin tuna (Thunnus orientalis). Mar Ecol Prog Series. 2000;206,251-260. https://doi.org/10.3354/meps206251
  21. Laurs RM, Fiedler PC, Montgomery DR. Albacore tuna catch distribution relative to environmental features observed from satellites. Deep Sea Res. 1984;31(9):1085-99. https://doi.org/10.1016/0198-0149(84)90014-1
  22. Lehodey P, Chai F, Hampton J. Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model. Fish Oceanogr. 2003;12(4-5):483-94. https://doi.org/10.1046/j.1365-2419.2003.00244.x
  23. Okiyama M. Occurrence of the postlarvae of bluefin tuna, Thynnus thynnus, in the Japan Sea. Bull Japan Sea Reg Fish Res Lab. 1974;25:89-97.
  24. Podesta GP, Browder JA, Hoey JJ. Exploring the association between swordfish catch rates and thermal fronts on U.S. longline grounds in the western North Atlantic. Cont Shelf Res. 1993;13(2-3):253-77. https://doi.org/10.1016/0278-4343(93)90109-B
  25. Schick RS, Goldstein J, and Lutcavage ME. Bluefin tuna (Thunnus Thynnus) distribution in relation to sea surface temperature fronts in the Gulf of Maine (1994-96). Fish Oceanogr. 2004;13(4),225-238. https://doi.org/10.1111/j.1365-2419.2004.00290.x
  26. Shimose T, Tanabe T, Chen KS, Hsu CC. Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fisf Res. 2009;100(2):134-9. https://doi.org/10.1016/j.fishres.2009.06.016
  27. Tanaka Y, Mohri M, Yamada H. Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thynnus orientalis in the coastal area of the sea of Japan. Fish Sci. 2007;73(3):534-42. https://doi.org/10.1111/j.1444-2906.2007.01365.x
  28. The Pew Charitable Trusts. Netting billions: a global valuation of tuna. 2016 Retrieved from http://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/netting-billions-a-global-valuation-of-tuna. Accessed 15 Sept.
  29. Yamanaka H. Synopsis of biological data on kuromaguro Thynnus orientalis (Temminck and Schlegal) 1942 (Pacific Ocean). FAO Fish Rep. 1963;6(2),180-217.
  30. Yang JH, Lee SI, Yoon SC, Kim JB, Chun YY, Kim SW, Lee JB. Migration and distribution changes of the sandfish, Arcroscopus japonicus in the East Sea. J Korean Soc Fish Tech. 2012;48(4):401-14. https://doi.org/10.3796/KSFT.2012.48.4.401
  31. Yokota T, Toriyama M, Kanai F, Nomura S. Studies on the feeding habit of fishes. Rep Nankai Reg Fish Res Lab. 1961;14:1-234.
  32. Yukinawa M. Age and growth of bluefin tuna, Thynnus thynnus (Linnaeus), in The North Pacific Ocean. Rep Nankai Reg fish res lab 25, 1967 1-18.

Cited by

  1. 우리나라 대형선망어업에서 어획된 태평양참다랑어의 CPUE 표준화(2003-2016) vol.54, pp.2, 2018, https://doi.org/10.3796/ksfot.2018.54.2.116
  2. The effect of substituting Undaria pinnatifida in formulated feeds with Sargassum horneri on growth and body composition of juvenile abalone (Haliotis discus, Reeve 1846) vol.31, pp.3, 2019, https://doi.org/10.1007/s10811-018-1672-2
  3. Substitution effect of the combined fouling macroalgae Ulva australis and Sargassum horneri for Undaria pinnatifida in formulated diets on growth and body composition of juvenile abalone (Haliotis dis vol.31, pp.5, 2018, https://doi.org/10.1007/s10811-019-01812-x
  4. 순환여과양식 시스템 내 감성돔(Acanthopagrus schlegelii) 치어에 미치는 질산성 질소의 만성적 영향 vol.52, pp.5, 2018, https://doi.org/10.5657/kfas.2019.0474
  5. Histological Distribution and Characterization of Collagen in European eel (Anguilla anguilla) Muscle vol.29, pp.1, 2018, https://doi.org/10.1080/10498850.2019.1695694
  6. 톨트라주릴(Toltrazuril)을 이용한 제주도 넙치(Paralichthys olivaceus)의 점액포자충성 여윔증에 대한 치료법 연구 vol.33, pp.1, 2018, https://doi.org/10.7847/jfp.2020.33.1.055
  7. 한국 제주도 근해에서 출현한 황성대과(Peristediidae) 어류 1미기록종, Peristedion liorhynchus 치어의 형태기재 및 분자동정 vol.53, pp.5, 2018, https://doi.org/10.5657/kfas.2020.0794
  8. 코로나 방전-플라즈마 처리수의 틸라피아 순환여과양식시스템 수질 개선 효과 vol.5, pp.2, 2020, https://doi.org/10.23005/ksmls.2020.5.2.51
  9. Contrasting Effects of Regional and Local Climate on the Interannual Variability and Phenology of the Scyphozoan, Aurelia coerulea and Nemopilema nomurai in the Korean Peninsula vol.13, pp.5, 2018, https://doi.org/10.3390/d13050214
  10. A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice vol.12, pp.15, 2018, https://doi.org/10.1039/d1fo00056j