(그림 1) Wasserstein Center 손실을 이용한 스케치 기반 3차원 물체 검색의 개요 (Figure 1) The overview of Sketch-based 3D object retrieval using Wasserstein Center Loss
(그림 2) Wasserstein Center 손실을 이용하여 학습된 특징 (임의의 10개 클래스 : 개, 열기구, 피아노, 화분, 플로어 램프, 용, 노트북, 신발, 뱀, 덤불) 시각화 (Figure 2) A visualization of learned features(randomly selected 10 classes : dog, hot air balloon, piano, potted plant, floor lamp, dragon, laptop, shoe, snake, bush) by Wasserstein center loss
(그림 3) SHREC 13 데이터 셋에 대한 검색 예제. 회색은 잘못 검색된 클래스(검색 클래스 : 손) (Figure 3) Retrieval examples on SHREC 13 dataset.Mismatch highlighted in gray (Retrieval classes : hand)
(그림 4) SHREC 13 데이터 셋의 PR-Curve 결과 비교 (Figure 4) The precision-recall curves in SHREC 13 dataset
(그림 5) SHREC 14 데이터 셋에 대한 검색 예제. 회색은잘못 검색된 클래스(검색 클래스 : 안락의자) (Figure 5) Retrieval examples on SHREC 14 dataset.Mismatch highlighted in gray(Retrievalclasses : armchair)
(그림 6) SHREC 14 데이터 셋의 PR-Curve 결과 비교 (Figure 6) The precision-recall curves in SHREC 14 dataset
(표 1) 실험 환경 (Table 1) Experimental Environments
(표 2) SHREC 13 데이터 셋의 NN, FT, ST, E, DCG, mAP 결과 비교 (%) (Table 2) Comparison of NN, FT, ST, E, DCG, and mAP results in SHREC 13 dataset (%)
(표 3) SHREC14 데이터 셋의 NN, FT, ST, E, DCG, mAP 결과 비교 (%) (Table 3) Comparison of NN, FT, ST, E, DCG, and mAP results in SHREC14 datasets (%)
참고문헌
- M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa, "Sketch-based shape retrieval," ACM Transactions on Graphics, vol. 31, no. 4, pp. 1-10, 2012. https://doi.org/10.1145/2185520.2335382
- B. Li, Y. Lu, A. Godil, T. Schreck, B. Bustos, A. Ferreira, T. Furuya, M. J. Fonseca, H. Johan, T. Matsuda, R. Ohbuchi, P. B. Pascoal, and J. M. Saavedra, "A comparison of methods for sketch-based 3D shape retrieval," Computer Vision and Image Understanding, vol. 119, pp. 57-80, 2014. https://doi.org/10.1016/j.cviu.2013.11.008
- Fang Wang, Le Kang, and Yi Li, "Sketch-based 3D shape retrieval using Convolutional Neural Networks," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. https://doi.org/10.1109/cvpr.2015.7298797
- R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality Reduction by Learning an Invariant Mapping," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR'06), 2006 https://doi.org/10.1109/cvpr.2006.100
- F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. https://doi.org/10.1109/cvpr.2015.7298682
- Y. Wen, K. Zhang, Z. Li, and Y. Qiao, "A Discriminative Feature Learning Approach for Deep Face Recognition," Lecture Notes in Computer Science, pp. 499-515, 2016. https://doi.org/10.1007/978-3-319-46478-7_31
- A. Rolet, M. Cuturi, and G. Peyr'e. "Fast dictionary learning with a smoothed wasserstein loss," International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, pp. 630-638, 2016. http://www.jmlr.org/proceedings/papers/v51/rolet16.pdf
- B. Li, Y. Lu, A. Godil, T. Schreck, M. Aono, H. Johan, J. M. Saavedra, and S. Tashiro. "Shrec'13 track: Large scale sketchbased 3D shape retrieval," Eurographics Workshop on 3D Object Retrieval, Girona, Spain, pp. 89-96, 2013. https://dx.doi.org/10.2312/3DOR/3DOR13/089-096
- T. Furuya and R. Ohbuchi. "Ranking on cross-domain manifold for sketch-based 3D model retrieval," International Conference on Cyberworlds, Yokohama, Japan, pp. 274- 281, 2013. https://doi.org/10.1109/cw.2013.60
- J. Xie, G. Dai, F. Zhu, and Y. Fang, "Learning Barycentric Representations of 3D Shapes for Sketch-Based 3D Shape Retrieval," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https://doi.org/10.1109/cvpr.2017.385
- He, Xinwei, et al. "Triplet-Center Loss for Multi-View 3D Object Retrieval," arXiv preprint arXiv:1803.06189, 2018. http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1632.pdf
- V. I. Bogachev and A. V. Kolesnikov, "The Monge-Kantorovich problem: achievements, connections, and perspectives," Russian Mathematical Surveys, vol. 67, no. 5, pp. 785-890, 2012. https://doi.org/10.1070/rm2012v067n05abeh004808
- Y. Rubner, C. Tomasi, and L. J. Guibas. "The Earth Mover's Distance as a metric for image retrieval," International Journal of Computer Vision, vol. 40, no. 2 pp. 99-121, 2000. https://doi.org/10.1023/a:1026543900054
- M. Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport," Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, pp. 2292-2300, 2013. https://papers.nips.cc/paper/4927-sinkhorn-distances-light speed-computation-of-optimal-transport.pdf
- R. Sinkhorn, "Diagonal Equivalence to Matrices with Prescribed Row and Column Sums," The American Mathematical Monthly, vol. 74, no. 4, p. 402, 1967. https://doi.org/10.2307/2314570
- J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyre, "Iterative Bregman Projections for Regularized Transportation Problems," SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A1111-A1138, 2015. https://doi.org/10.1137/141000439
- N. Bonneel, G. Peyre, and M. Cuturi, "Wasserstein barycentric coordinates," ACM Transactions on Graphics, vol. 35, no. 4, pp. 1-10, 2016. https://doi.org/10.1145/2897824.2925918
- P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, vol. 134, no. 1, pp. 19-67, 2005. https://doi.org/10.1007/s10479-005-5724-z
- L. van der Maaten and G. Hinton. "Visualizing highdimensional data using t-SNE.," Journal of Machine Learning Research, vol. 9, pp. 2579-2605, 2008. http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
- B. Li, Y. Lu, C. Li, A. Godil, T. Schreck, M. Aono, M. Burtscher, H. Fu, T. Furuya, H. Johan, J. Liu, R. Ohbuchi, A. Tatsuma, and C. Zou. "Extended large scale sketch-based 3D shape retrieval," Eurographics Workshop on 3D Object Retrieval, Strasbourg, France, pp. 121-130, 2014. http://dx.doi.org/10.2312/3dor.20141058
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://doi.org/10.1109/cvpr.2016.90
- S. Ferradans, G.-S. Xia, G. Peyre, and J.-F. Aujol, "Static and Dynamic Texture Mixing Using Optimal Transport," Scale Space and Variational Methods in Computer Vision, pp. 137-148, 2013. https://doi.org/10.1007/978-3-642-38267-3_12