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Abstract 
 

A voice is one of the most significant non-verbal elements for communication. Disorders in 
vocal organs, or habitual muscular setting for articulatory cause vocal disorders. Therefore, by 
analyzing the vocal disorders, it is possible to predicate vocal diseases. In this paper, a method 
of predicting vocal disorders using the jitter, shimmer, and harmonics-to-noise ratio (HNR) 
extracted from vocal records is proposed. In order to extract jitter, shimmer, and HNR, 
one-second’s voice signals are recorded in 44.1khz. In an experiment, 151 voice records are 
collected. The collected data set is clustered using cobweb clustering method. 21 classes with 
12 leaves are resulted from the data set. According to the semantics of jitter, shimmer, and 
HNR, the class whose centroid has lowest jitter and shimmer, and highest HNR becomes the 
normal vocal group. The risk of vocal disorders can be predicted by measuring the distance 
and direction between the centroids.  
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1. Introduction 

The voice is one of the most significant elements for communication [1, 2]. As an element of 
non-verbal communication, the voice is responsible for two objectives. The first is explicitly 
to deliver the contents of the communication. The second is to represent the characteristics of 
the speaker. Phonetic quality indicates whether the pronunciation of each word is correct. For 
determining phonetic quality, the pronunciations of persons in various age, nationality, gender, 
and so on, are collected. The the representative pattern of pronunciations for each word is 
extracted from the collected set. By comparing the similarity between the representative 
pattern and the input voice signal, the phonetic quality is determined [3]. On the other hand,  
voice quality indicates whether the pronunciation is audible [4, 5]. Tho voices of those who 
catch a cold have lower voice quality than the voices of noraml persons. The voice quality is 
affected by two elements. One is an organic factor such as vocal tract anatomy or physiology. 
The other is a setting factor which is the habitual muscular setting for articulatory [2]. 

For natural language processing, it is important to recognize the semantics of the recorded 
voice signals. However, the semantics of speaking is not required for determining vocal 
disorders. Instead, the steadiness of modulating the voice, which shows the status of articular 
organs, is more significant feature for predicting vocal disorders. The most popular properties 
for describing the steadiness of voice are jitter, shimmer, and harmonics-to-noise ratio (HNR) 
[6, 7, 8]. Jitter shows the periodicity of voice signals. The voice of good quality should have a 
stable periodicity. Shimmer shows the stability of amplitude. The amplitude is calculated from 
the peak and valley in every period. The voice of good quality should have a low standard 
deviation for the amplitudes of each period. HNR shows the ratio of the additive noises in the 
voice signals. Noises are defined as an aperiodic part of a voice. The aperiodic parts are mostly 
resulted from the turbulent airflow during phonation. Improper closure of the vocal folds 
makes the turbulent.  

From the definitions of jitter, shimmer, and HNR, it is obvious to determine whether a given 
voice is qualified or not. A voice, which has low jitter, low shimmer, and high HNR, will be 
determined as a voice of good quality. However, the criteria for separating the low and high 
values of jitter, shimmer, and HNR are not confirmed. Depending on the way of calculating 
jitter, shimmer, and HNR, the thresholds for these features can be changed [9, 10, 11, 12, 13]. 
Moreover, the explanation of the predicted vocal disorders needs to be provided. Some bad 
voices can have high jitter value, high shimmer value, or high HNR value. Therefore, it is 
necessary to distinguish the bad voices, which have different patterns of features. 

In this paper, we propose a method of diagnosing vocal disorders with detailed explanation, 
which shows why the given voice is classified as a disordered voice. For diagnosing vocal 
disorders, cobweb clustering method is used [14, 15]. Using the cobweb, the collected voice 
records are grouped with similar records. From the clusters, a cluster whose centroid has 
lowest jitter, lowest shimmer, and highest HNR is selected as a normal cluster that includes the 
voice records in healthy condition. By comparing the distance and direction between the 
centroids of other clusters, the vocal records in other clusters are determined as disordered 
voices. For the experiment, 151 voice records from 115 participants are collected.  

Section 2 describes the methods for calculating jitter, shimmer, and HNR from the voice 
signals, and the way of predicating vocal disorders from the calculated three features. In 
Section 3, an experiment for evaluating the proposed method is explained. Section 4 presents 
the discussion about the experimental results and concludes.  
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2. Method 

2.1 Features for Determining Vocal Disorders 
In general, steady voice is regarded as a good voice. In order to measure the steadiness of a 
voice, various criteria such as frequency measures, frequency perturbation measures, 
measures of perturbation intensity, voice break measures, and mute or unvoiced segments 
measures are used [16]. Applications that calculate such measures from voices are distributed 
both commercially and non-commercially. Multi-Dimensional Voice Program (MDVP) [17], 
Dr. Speech [18], Praat [19], CSpeech [20] are widely used application for this purpose. From 
the various criteria, the preferred features for determining the steadiness of a voice are jitter, 
shimmer, and HNR [6, 7, 8].  

Jitter is the temporal variation of the signal. When the pulse of the signal is delayed or ahead, 
the jitter of the voice increases. Therefore, a voice that has irregular pulse cycles shows high 
jitter value. Jitter is calculated by dividing the average absolute difference between 
consecutive periods with the average period. According to MDVP, a voice in pathological 
problems has a jitter value higher than 1.040% [21]. The numerator of the equation for 
calculating jitter can be also used for replacing jitter. According to MDVP, the average 
absolute difference between consecutive periods of a voice that has pathological problems is 
higher than 83.200 microseconds. Generally, when this value is divided by the average period, 
about 1.040 is resulted. In order to calculate jitter, the average period is calculated from the 1 
second’s signals. By using a window size, the relative average perturbation can be used. The 
window size can be 3, 5, or 11. The window size means the number of periods to be used for 
calculating the relative average perturbation. According to MDVP, when the window size is 5, 
the threshold for pathology is 0.680%. Depending on the way of calculating jitter, its accuracy 
and computing load are different. Moreover, jitter is one of the most sensitive for the noise. In 
the process of calculating jitter, finding the start and end positions in the given voice signals is 
important for defining the length of each period. Therefore, a complex or dynamic 
pronouncement is hard to find the length of a period. At the same time, noises in the voice 
signals easily confuse the process of detecting the length of a period. Therefore, the 
pronouncement of vowels whose signals are stable is preferred. /a/, /u/, or /i/ are the preferred 
vowels for calculating jitter, and /a/ which requires the least muscular tension and consists of 
relatively high frequencies is used in the experiments in Section 3. Equation 1 shows the 
method for calculating jitter used in this paper. 
 

Jitter =  
1

𝑁−1
∑ |𝑇𝑖−𝑇𝑖−1|𝑁−1
𝑖=1
1
𝑁
∑ 𝑇𝑖𝑁
𝑖=1

∗ 100                       (1) 

  
Shimmer is the variability of the peak-to-peak amplitude of the voice. There are various 

methods for calculating shimmer. The simplest method is to divide the average absolute 
difference between the amplitudes of consecutive period by the average amplitude. According 
to MDVP, a voice in pathological problems has a shimmer value higher than 3.810%. The 
difference between the amplitudes of consecutive periods may calculated with common 
logarithm. In this case, the unit for shimmer value is dB. According to MDVP, a voice in 
pathological problems has higher than 0.350 dB. The average absolute difference between 
amplitude of periods can be changed using different window size. The window size can be 3, 5, 
or 11. The window size is the number of periods to be used for calculating the average absolute 
difference between amplitude. The main difference of these methods for calculating shimmer 
is the numerator of the equation because the denominator is the same in all the methods. 
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Depending on the required accuracy and available computing power, the proper method can be 
selected because all the methods calculate the shimmer, which shows how the voice signals 
are trembling in amplitude. Equation 2 shows the method for calculating shimmer used in this 
paper. 

Shimmer =  
1

𝑁−1
∑ |𝐴𝑖−𝐴𝑖−1|𝑁−1
𝑖=1
1
𝑁
∑ 𝐴𝑖𝑁
𝑖=1

∗ 100                 (2) 

 
 HNR is the ratio between the periodic part and aperiodic part of the voice signal. Voice 

with less aperiodic part has a low HNR value. However, higher HNR does not means higher 
voice quality. It is impossible to remove all the noises from the obtained signals practically. At 
the same time, it is also impossible for bionic organs to generate perfectly static movement. 
Depending on the pronunciation, health voices have proper range of HNR. For example, /a/ or 
/i/ sounds have a harmonicity of around 20 dB, which means 99% of periodic part and 1% of 
aperiodic part. For /u/ sound, the proper HNR is around 40 dB, which means 99.99% of 
periodic part and 0.01% of aperiodic part. This difference is originated from the fact that /a/ are 
/i/ sound are mainly composed of high frequencies and /u/ sound is mainly composed of low 
frequencies. Therefore, /u/ sound is easier for a larynx to pronounce with less muscle tensions. 
When /a/ sound with HNR value lower than 20 dB, it is heard hoarsely. When /a/ sound with 
HNR value higher than 40 dB, some pathological problems in vocal cords or mistakes in 
obtainment of the voice signals can be suspected. Equation 3 shows the method for calculating 
HNR used in this paper.  

HNR = 10 ∗  log10
𝑛∗∫ 𝑓𝐴2(𝑟)𝑟

0  𝑑𝑟

∑ ∫ [𝑓𝑖(𝑟)− 𝑓𝐴(𝑟) ]2 𝑑𝑟𝑇𝑖
0

𝑛
𝑖=1

       (3) 

2.2 Data Collection and Signal Processing 
In order to determine the vocal disorders, 147 records are collected from 115 participants who 
attend the Department of Otorhinolaryngology in Soonchunhyang Bucheon Hospital (SBH). 
Each participant was asked to pronounce /a/ sound for 3 seconds. As shown in Section 2.1, 
jitter, shimmer, and HNR are easily polluted by noises, /a/ sound is used. From the 3 seconds’ 
length of the voice, the first and third second’s signals are removed. The voice signals are 
recorded in 44100 sampling rates.  

In order to extract jitter, shimmer, and HNR from each record, the signals are preprocessed. 
The preprocessing process is composed of two steps. In the first step, noises except the 
patient’s voice are removed by using a filter. In this research, 2nd-order Butterworth bandpass 
filter with cutoff frequency range between 80 and 300 Hz is applied to the raw voice signal. 
The cutoff frequency is determined because the speech of typical adult has a fundamental 
frequency from 85 to 196 Hz for a male and from 155 to 334 Hz for a female [1]. In the second 
step, the peaks and valleys in the signals are detected. Each period in the signals are extracted 
based on the peaks and valleys. A period is calculated from a peak to the next peak or from a 
valley to the next valley. In this paper, the length of peak-to-peak is used for measuring the 
length of a period. An amplitude is calculated from a peak to the nearest next valley or a valley 
to the nearest next peak. Depending on the first point of the voice signal, valley-to-peak or 
peak-to-valley is determined. Fig. 1 shows the voice signals following the processing steps.  
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(a) Raw voice signals 

 
(b) Voice signals after filtered with Butterworth bandpass filter 

 
(c) Peaks and Valleys detected from the filtered signals 

 
Fig. 1. Steps for preprocessing the obtained voice signals 
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2.3 Vocal Disorder Determination 
In order to determine vocal disorders, clustering method is employed. Generally, for 
determining the category of new observation, classification methods are used. The problem of 
determining vocal disorders is also a kind of classification problem because the result is to 
identify the category where the newly provided voice belongs. However, to employ such 
classification methods such as neural networks [22], support vector machine [23], decision 
tree [24], or k-nearest neighbors [25], the features of the voices should be preciously 
calculated. Without the guarantee that features of the same voice are always same, the rules or 
learned classifiers cannot be applied to other voices whose features are calculated with 
different methods, or preprocessed with different configured filters. Therefore, instead of 
using classification methods, we use clustering methods, which group the voices depending on 
the similarity [26, 27]. The methods for calculating each feature’s value and preprocessing the 
voice signals become independent from the way of determining vocal disorders. The 
determination process consists of four steps. Fig. 2 shows the process for determining vocal 
disorders. 
 

 
Fig. 2. The process for determining vocal disorders 

 
In the first step, clusters are made from the collected voice records. As each voice record has 

three features which are jitter, shimmer, and HNR, three dimensional space is used for 
describing the clusters. In the second step, normal cluster of voice records is selected. The 
normal cluster means that the voice records in the cluster are in healthy condition. Depending 
on the definition of three features, a cluster whose centroid has lowest jitter, lowest shimmer, 
and highest HNR becomes the normal cluster. Two heuristic rules are added for selecting the 
normal cluster. The first rule is for configuration of the weights of three features. Rank is a 
function that calculates rank of the parameter in ascending order and the inverse Rank is a 
function that calculates rank of the parameter in descending order. This rule is expressed in 
Equation 4.  
 

RankingValue =  α ∙ 𝑅𝑎𝑛𝑘−1(jitter) + β ∙ 𝑅𝑎𝑛𝑘−1(shimmer) + γ ∙ Rank(HNR)                 (4) 
 

 From the clustering step, multiple clusters are made depend on the similarity among the 
voice records. Some clusters may have only a few elements. As long as the training data set is 
not biased, the size of the normal cluster should be bigger than the threshold value. According 
to the central limit theorem, if the size of the training set is big enough and the normal 
distribution is assumed, the normal cluster should have at least 68.27% of the total data set. 
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Therefore, when the size of normal cluster, which is selected by using the first rule, is not big 
enough, the selected cluster should be merged with near clusters or replaced by the next ranked 
cluster. In this paper, we use a cobweb clustering method for grouping the voice records. 
Cobweb is a hierarchical and conceptual clustering method. Using the category utility, which 
is a way of evaluating the quality of the classification, similar groups are merged and 
distinguishing group is split. Therefore, when a selected cluster is not sufficient for the normal 
cluster, it can be easily extended by rising the hierarchy. At the same time, the vocal disorder is 
the complementary set of normal voice, cobweb, whose root cluster covers the whole problem 
space, is suitable for determining vocal disorder.  

The third step is to measure the distance and direction from the centroid of the normal 
cluster to other cluster’s centroid. This step is relatively simple because the centroid of each 
cluster is a vector with three elements. The distance is calculated in Euclidean distance and the 
direction is calculated in the direction cosines. In order to calculate the distance and direction, 
the feature values of the centroids are normalized and multiplied with the weight for each 
feature as defined in Equation 4. The methods for calculating distance and direction are shown 
in Equation 5.  
 

Distance                 =  �(α ∙ Norm(jitter))2 + (β ∙ Norm(shimmer))2 + (γ ∙ Norm(HNR))2 

(5) 

Directionjitter        =  
α ∙ Norm(jitter)

�(α ∙ Norm(jitter))2 + (β ∙ Norm(shimmer))2 + (γ ∙ Norm(HNR))2
 

Directionshimmer   =  
β ∙ Norm(shimmer)

�(α ∙ Norm(jitter))2 + (β ∙ Norm(shimmer))2 + (γ ∙ Norm(HNR))2
 

DirectionHNR         =  
γ ∙ Norm(HNR)

�(α ∙ Norm(jitter))2 + (β ∙ Norm(shimmer))2 + (γ ∙ Norm(HNR))2
 

 
These calculated distance and direction are used in the fourth step for identifying the vocal 

disorders of other clusters. The distance indicates the degree of the vocal disorders. The longer 
distance from the normal cluster means more significant disorders. The vocal disorders are 
explained by using the directions of each feature. When a specific direction is close to 0, the 
feature can be regarded as a neutral cause for the vocal disorders.  
 

3. Experimental Result 

3.1 Clusters of Voice Records 
Fig. 3 shows the scatter plot of the 151 voice records, which are collected and preprocessed as 
described in Section 2.  
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Fig. 3. The scatter plot of collected voice records with three features, which are jitter, shimmer, and 

HNR 
 

Table 1 shows the statistical characteristic of each features. The values of three features are 
different depending on the methods of signal processing and feature calculation. Depending on 
the window size for feature extraction, the configuration of bandpass filter, and the sampling 
rates of recording the voice can affect the result. In this experiment, jitter, shimmer and HNR 
are calculated using the equation 1, 2, and 3 shown in Section 2.1.  
 

Table 1. Statistical characteristics of three features 
 Min Max Mean StdDev 

Jitter 0.27 67.63 9.979 17.16 
Shimmer 0.60 288.88 34.79 58.85 

HNR 5.00 37.81 21.31 9.026 
Normalized_Jitter 0 1 0.144 0.255 

Normalized_Shimmer 0 1 0.119 0.204 
Normalized_HNR 0 1 0.497 0.275 

 

3.2 Vocal Disorder Determination 
In order to determine vocal disorders, the voice records are clustered using cobweb. The 
configuration for cobweb is made with 0.1 for the acuity, 0.003 for cutoff, and 10 as a seed 
number for randomization. Fig. 4 shows the result of the cobweb clustering. A cluster, which 
has sub clusters, has a name starting ‘Node’. A cluster, which has no sub clusters, has a name 
starting ‘Leaf’. As the clusters have hierarchical relationship with others, a node can represent 
its children by combining all the elements in its sub clusters. For example, Node 5 can be 
described by combining Leaf 6 and Leaf 7. Some clusters can have no elements. For example, 
Leaf 20 is an empty cluster. In the process of training the cobweb, Node 18 was divided into 
Leaf 19 and Leaf 20. However, in the process of validation, no element is assigned to Leaf 20. 
In such case, empty clusters can be made.  
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Fig. 4. The result of voice records after applying cobweb clustering method 

 
The elements of each cluster resulted from the cobweb clustering are shown in Fig. 5. Leaf 1 

is shown as a group of red dots. The scatter plot with two features are shown in Fig. 6. 
 

 
 

Fig. 5. The scatter plot of collected voice records after cobweb clustering process 
 

(a) Jitter and Shimmer  (b) HNR and Jitter  (c) HNR and Shimmer 
Fig. 6. The scatter plot of collected voice records with two axis 
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The centroid of each cluster is shown in Table 2. According to the rule for determining the 
normal cluster which is described in Section 2.3, Leaf 1 is selected as a normal cluster. The 
weight for each feature is set as 0.33 because in this experiment we assumed that all the 
features are equally significant. As shown in Fig. 4, Leaf 12 and Leaf 13 have the same super 
cluster. Therefore, they can be combined into Node 11. Even though Leaf 7 and Leaf 9 are 
siblings, they do not have a common super cluster. Therefore, Leaf 7 and Leaf 9 cannot be 
combined directly. Leaf 9 can be combined with Leaf 10 because they have the same super 
cluster. Leaf 7 can be combined with Leaf 6. After that, Node 5 and Node 8 can be combined. 
The rule for combining is based on the fact that only the most similar clusters can be 
combined.  
  

Table 2. Centroid of each cluster made by cobweb 
 # of instances Jitter Shimmer HNR 

Leaf 1 115 0.025 0.025 0.607 

Leaf 4 1 0.362 1.000 0.144 

Leaf 6 5 0.128 0.531 0.300 

Leaf 7 1 0.000 0.412 0.714 

Leaf 9 3 0.316 0.335 0.143 

Leaf 10 2 0.413 0.494 0.256 

Leaf 12 4 0.858 0.197 0.065 

Leaf 13 10 0.512 0.230 0.084 

Leaf 15 4 0.625 0.674 0.078 

Leaf 17 3 0.946 0.572 0.127 

Leaf 19 3 0.734 0.473 0.030 

Leaf 20 0 0 0 0 

 
As Leaf 1 is determined as the normal cluster, other clusters can be explained why the 

elements of each cluster is classified as a disordered voice. Table 3 shows the distances 
between the centroid of Leaf 1 and the centroid of other clusters. The voice records in Leaf 17, 
which has the longest distance are the riskiest voices. The voice records in Leaf 7, which has 
the shortest distance, are the least risky voices. According to the direction of centroid of this 
cluster, the rehabilitative plan for the voices in this cluster needs to be focused on keeping the 
pronouncing amplitude stable.  
 

Table 3. Distance and Direction between clusters 
 Distance Directionjitter Directionshimmer DirectionHNR 

Leaf 4 1.130 0.298 0.862 -0.409 
Leaf 6 0.601 0.172 0.842 -0.511 
Leaf 7 0.402 -0.062 0.962 0.266 
Leaf 9 0.629 0.462 0.493 -0.737 
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Leaf 10 0.703 0.553 0.667 -0.499 
Leaf 12 1.009 0.826 0.171 -0.538 
Leaf 13 0.743 0.655 0.276 -0.704 
Leaf 15 1.031 0.583 0.630 -0.513 
Leaf 17 1.174 0.785 0.466 -0.408 
Leaf 19 1.019 0.697 0.440 -0.567 
Leaf 20 N/A N/A N/A N/A 

 

4. Discussion and Conclusion 

4.1 Discussion 
The quality of sound has been analyzed in terms of the jitter, shimmer, and HNR in various 
academic and commercial domains. However, the values calculated for the features depend on 
the way the raw voice signals are preprocessed. The criteria for diagnosing vocal disorders are 
application-specific, as each application has its own preprocessing method, and depend on the 
operator’s experience and knowledge. In this paper, we have presented a clustering-based 
abnormality detection method. We used the cobweb method to acquire the hierarchical 
relations between clusters, then based our classification on the cluster whose centroid 
exhibited the best voice quality. The degree of vocal disorder in the other clusters was 
calculated based on the distance and direction from the centroid of the basis cluster.  

However, three problems remain unsolved. The first problem is that the feature calculation 
is still influenced by the way of preprocessing the voice records. In the experiment, 1 second’s 
length of voice signals is used for feature extraction. The calculated features are changed 
depending on the size and position of the window. At the same time, the filter, which removes 
the noise of the signals, also influence the calculated feature values. As the main objective of 
this paper is not to extract the features of each record exactly but to group the records and find 
the relations among the cluster, more robust and accurate method for feature calculation can 
increase the reliability of the clusters. The second problem is that there are concealed relations 
among jitter, shimmer, and HNR. For the patients whose voices are in the cluster whose 
centroid has low jitter, high shimmer, and low HNR, a rehabilitation plan which is to help the 
patients to pronounce with stable amplitude can be provided. If the knowledge about the 
mechanism of vocal cords, which shows how a sound of low jitter and high shimmer can be 
made from the vocal cords, is involved, more accurate and more reliable explanation for the 
given vocal records can be provided. The third problem is the boundary problem. An element, 
which locates in the boundary, can be easily misclassified. Moreover, as the length from the 
centroid to the boundary of a cluster is different for each cluster, the basic rule for measuring 
the severity of vocal disorders is easily spoiled. Therefore, for enhancing the quality of the 
automated vocal disorder detection, clinical knowledge for vocal cords is necessary. As a 
future work, the operating principals of vocal cords and the correlation between the changes of 
jitter, shimmer, and HNR and status of vocal cords will be researched and used as base 
knowledge.   
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4.2 Conclusion 
The quality of voice is affected by the status of organics and the habitual setting for speaking. 
Therefore, it is possible to detect vocal disorders by analyzing the vocal sound. Jitter, shimmer 
and HNR are the most significant features, which can be extracted from the voice records for 
detecting vocal disorders. In this paper, we propose a method of determining a vocal disorder 
relatively using cobweb based clustering. In the experiment, 21 classes and their hierarchical 
relations are obtained from 151 voice records. The cluster, which has the semantically finest 
centroid is determined as a normal cluster. The voice records in other clusters are determined 
to have a risk of vocal disorder. The severity is predicted by measuring the distance and 
direction between the centroids of base cluster and the target cluster.  

However, as described in Section 4.1, the heuristic rules for selecting the normal cluster and 
measuring the severity of vocal disorders in other cluster are not sufficient to make accurate 
and reliable explanation. The explicit way of calculating the degree of the risk of vocal 
disorder for each cluster and validation of the resulted degree will be researched in our future 
work.  
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