DOI QR코드

DOI QR Code

해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우)

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves)

  • 이광호 (가톨릭관동대학교 에너지자원플랜트공학과) ;
  • 이준형 (한국해양대학교 대학원 토목환경공학과) ;
  • 정익한 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Lee, Kwang Ho (Dept. of Energy and Plant Eng., Catholic Kwandong University) ;
  • Lee, Jun Hyeong (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Jeong, Ik Han (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Kim, Do Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 투고 : 2018.10.09
  • 심사 : 2018.11.28
  • 발행 : 2018.12.31

초록

진동수주형의 파력발전구조물(OWC-WEC)는 파랑에너지 흡수장치 중에 가장 효율적인 것으로 알려져 있다. 이 장치는 공기실 내부에서 해수면의 상 하운동을 공기흐름으로 변환하고, Wells 터빈으로 대표되는 터빈의 구동력으로부터 전기에너지가 생산된다. 따라서, 높은 전기에너지를 얻기 위해서는 공기실 내부에서의 수면변동에 피스톤모드의 공진을 유발시켜 수면진동을 증폭시킬 필요가 있다. 본 연구에서는 해수소통구를 구비한 신형식의 OWC-WEC를 상정하고, 구조물에 의한 파랑변형, 공기실 내에서 수면변동과 노즐에서 공기유출속도 및 해수소통구에서 해수흐름속도를 수치해석적으로 상세히 평가한다. 수치해석모델은 Navier-Stokes solver의 혼상류해석기법에 기초한 공개 CFD code인 OLAFLOW 모델을 적용하며, 모델의 타당성을 검증하기 위하여 기존의 실험결과 및 수치해석결과와를 비교 논의한다. 본 연구의 범위 내에서 Ursell수가 커질수록 노즐에서 공기흐름속도가 증가하며, 공기실 내부에서 외부로 유출되는 공기속도가 외부에서 공기실 내부로 유입되는 공기속도보다 더 크다 등의 중요한 사실을 알 수 있었다.

It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

키워드

참고문헌

  1. Boccotti, P. (2007a). Comparison between a U-OWC and a conventional OWC. Ocean Engineering, 34, 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  2. Boccotti, P. (2007b). Caisson breakwaters embodying an OWC with a small opening-Part I: Theory. Ocean Engineering, 34, 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  3. Bonke, K. and Ambli, N. (1986). Prototype wave power stations in Norway. Proceedings of International Symposium on Utilization of Ocean Waves-Wave to Energy Conversion. ASCE, 34-45.
  4. CDIT (2001). Research and development of numerical wave channel (CADMAS-SURF), CDIT library, 12, Japan.
  5. Cho, I.H. (2002). Wave energy absorption by a circular cylinder oscillating water column device. Journal of Ocean Engineering and Technology, 14(1), 8-18 (in Korean).
  6. Delaure, Y.M.C. and Lewis, A. (2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  7. EI Marjani, A., Castro Ruiz, F., Rodriguez, M.A. and Parra Santos, M.T. (2008). Numerical modelling in wave energy conversion systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  8. Evans, D.V. and Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17, 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  9. Evans, D.V. and Porter, R. (1997). Efficient calculation of hydrodynamic properties of OWC-type devices. Journal of Offshore Mechanics and Arctic Engineering, 119, 210-218. https://doi.org/10.1115/1.2829098
  10. Falcao, A.F. de O. (2000). The shoreline OWC wave power plant at the Azores. Proceedings of 4th European Wave Energy Conference, 42-47.
  11. Falcao, A.F. de O. (2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24, 73-82. https://doi.org/10.1016/S0141-1187(02)00021-4
  12. Falcao, A.F. de O. (2010). Wave energy utilization : A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  13. Falcao, A.F. de O. and Justino, P.A.P. (1999). OWC wave energy devices with air flow control. Ocean Engineering, 26, 1275-1295. https://doi.org/10.1016/S0029-8018(98)00075-4
  14. Falcao, A.F. de O. and Rodrigues, R.J.A. (2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24, 59-71. https://doi.org/10.1016/S0141-1187(02)00022-6
  15. Gervelas, R., Trarieux, F. and Patel, M. (2011). A time-domain simulator for an oscillating water column in irregular waves at model scale. Ocean Engineering, 38, 1-7. https://doi.org/10.1016/j.oceaneng.2010.10.016
  16. Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. ICCE-1976, ASCE, 828-845.
  17. Gouaud, F., Rey, V., Piazzola, J. and Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering. 57, 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  18. Greenhow, M. and White, S.P. (1997). Optimal heave motion of some axisymmetric wave energy devices in sinusoidal waves. Applied Ocean Research, 19, 141-159. https://doi.org/10.1016/S0141-1187(97)00020-5
  19. Heath, T., Whittaker, T.J.T. and Boake, C.B. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). Proceedings of 4th European Wave Energy Conference, 49-55.
  20. Higuera, P., Liu, P.L.F., Lin, C., Wong, W.Y. and Kao, M.J. (2018). Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 847, 186-227. https://doi.org/10.1017/jfm.2018.321
  21. Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C. and Losada, I.J. (2015). Validation of OpenFOAM(R) for oscillating water column three-dimensional modeling, Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051
  22. Josset, C. and Clement, A.H. (2007). A time-domain numerical simulator for oscillating water column wave power plants. Renewable Energy, 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  23. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K. and Piesche, M. (2010). A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids. European Conference on Computational Fluid Dynamics.
  24. Kyoung, J.H., Hong, S.Y. and Hong, D.C. (2006). Numerical analysis on wave energy absorption of OWC-type wave power generation. Journal of Ocean Engineering and Technology, 20(4), 64-69 (in Korean).
  25. Lee, K.H., Park, J.H., Baek, D.J., Cho, S and Kim, D.S. (2011). Discussion on optimal shape for wave power converter using oscillating water column. Journal of Korean Society of Coastal and Ocean Engineers, 23(5), 345-357 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.5.345
  26. Lee, K.H., Park, J.H. and Kim, D.S. (2012). Numerical simulation of irregular airflow within wave power converter using OWC by action of 3-dimensional irregular waves. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 189-202 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.189
  27. Lee, K.H., Park, J.H., Cho, S. and Kim, D.S. (2013a). Numerical simulation of irregular airflow in OWC wave generation system considering sea water exchange. Journal of Korean Society of Coastal and Ocean Engineers, 25(3), 128-137 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.3.128
  28. Lee, K.H., Park, J.H., Baek, D.J., Cho, S. and Kim, D.S. (2013b). Discussion on optimal shape for wave power converter using oscillating water column. Journal of Korean Society of Coastal and Ocean Engineers, 23(5), 345-357 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.5.345
  29. Malmo, O. and Reitan, A. (1985). Wave-power absorption by an oscillating water column in a channel. Journal of Fluid Mechanics, 158, 153-175. https://doi.org/10.1017/S0022112085002592
  30. Nakamura, T. and Nakahashi, K. (2005). Effectiveness of a chamber-tpye water exchange breakwater and its ability of wave power extractions by wave induced vortex flows. Proceedings of Civil Engineering in the Ocean, JSCE, 21, 547-552 (in Japanese). https://doi.org/10.2208/prooe.21.547
  31. Ohneda, H., Igarashi, S., Shinbo, O., Sekihara, S., Suzuki, K. and Kubota, H. (1991). Construction procedure of a wave power extracting caisson breakwater. Proceedings of 3rd Symposium on Ocean Energy Utilization, 171-179.
  32. Paixao Conde, J.M. and Gato, L.M.C. (2008). Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, 33, 2637-2644. https://doi.org/10.1016/j.renene.2008.02.028
  33. Park, J.H. (2013). The study on the fixed OWC wave power converter system. Master's Thesis, Korea Maritime and Ocean University (in Korean).
  34. Ravindran, M. and Koola, P.M. (1991). Energy from sea waves-the Indian wave energy program. Current Science, 60, 676-680.
  35. Ryu, H.J., Shin, S.H., Hong, K.Y., Hong, S.W. and Kim, D.Y. (2007). A Simulation of directional irregular waves at Chagui-Do sea area in Jeju using the Boussinesq wave model. Journal of Ocean Engineering and Technology, 21(1), 7-17 (in Korean).
  36. Smagorinsky, J. (1963). General circulation experiment with the primitive equations. Mon, Weath. Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  37. Yin, Z., Shi, H. and Cao, X. (2010). Numerical simulation of water and air flow in oscillating water column air chamber. Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, 796-801.