DOI QR코드

DOI QR Code

Antimicrobial activities of Bacillus subtilis DS660 and Paenibacillus polymyxa DS842

Bacillus subtilis DS660과 Paenibacillus polymyxa DS842의 항균활성

  • Lee, Da-Sol (Department of Biological Sciences, Kangwon National University,) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University,)
  • Received : 2018.08.06
  • Accepted : 2018.10.19
  • Published : 2018.12.31

Abstract

This study was carried out to isolate soil bacteria with antimicrobial activity and evaluate antimicrobial substances produced by isolated bacteria. Among many isolates Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 showed high antimicrobial activities against 6 species of microbial residents on human skin and 3 species of pathogenic bacteria. DS660 and DS842 showed 15.3~26.8 and 11.3~27.5 mm of inhibition zone diameter, respectively on nutrient agar medium against most target bacteria and fungi. DS660 and DS842 produced $57{\pm}8$ and $170{\pm}15{\mu}mol/ml$ of siderophore, respectively as an antimicrobial substance. Analysis of ethyl acetate extract of culture supernatants of DS660 and DS842 suggested production of glycolipid biosurfactant which reduced surface tension of culture supernatant of DS660 and DS842 from 60.0 to 40.3 and 30.3 mN/m, respectively. DS660 and DS842 also showed $169.2{\pm}9.9$ and $357.2{\pm}13.7nmol/min/mg$ protein of ${\beta}-1,3$-glucanase activity, respectively, and hydrolyzed cell wall components of 3 bacterial species. These results suggest that B. subtilis DS660 and P. polymyxa DS842 may be utilized as an environment-friendly biocontrol agent against some skin microbes and pathogenic bacteria.

이 연구에서는 여러 미생물에 항균활성을 갖는 토양세균을 분리하고 그들이 생성하는 항균물질과 그 효과를 조사하였다. 많은 세균 분리균주 중 Bacillus subtilis DS660과 Paenibacillus polymyxa DS842은 6가지 인간 피부 상재균과 3종의 병원성 세균에 대하여 높은 항균활성을 나타내었다. DS660과 DS842 균주는 대부분의 대상 세균과 진균에 대하여 NA 배지 상에서 각각 직경 15.3~26.8과 11.3~27.5 mm의 생장 저해대를 형성하는 우수한 항균활성을 나타내었다. DS660과 DS842 균주는 siderophore를 생산하였는데 각각 $570{\pm}8$$1700{\pm}15{\mu}mol/ml$의 최대 생산량을 나타내었고, 균주 배양 상등액의 에틸 아세테이트 추출물의 분석은 그들의 glycolipid 계면활성물질 생성을 나타내며 이에 의해 배양 상등액의 표면장력을 60 mN/m에서 각각 40.3과 30.3 mN/m으로 현저하게 낮추는 계면활성을 보였다. 또한 두 균주는 $169.2{\pm}9.9$$357.2{\pm}13.7nmol/min/mg$ protein의 ${\beta}$-1,3-glucanase 생산을 나타낼 뿐만 아니라 세균의 세포벽 성분을 용해하는 능력을 지녔다. 이러한 결과들은 B. subtilis DS660과 P. polymyxa DS842가 일부 중요한 인간 피부 상재균과 병원성 세균에 대한 효율적인 생물제어제로 사용될 수 있음을 암시한다.

Keywords

MSMHBQ_2018_v54n4_354_f0001.png 이미지

Fig. 1. Digesting of cell wall components of B. subtilis (A), P. aeruginosa (B), and E. coli (C) by B. subtilis DS660 and P. polymyxa DS842.

MSMHBQ_2018_v54n4_354_f0002.png 이미지

Fig. 2. Glycolipid biosurfactant from B. subtilis DS660 and P. polymyxa DS842 detected by thin-layer chromatography.

MSMHBQ_2018_v54n4_354_f0003.png 이미지

Fig. 3. Siderophore production by B. subtilis DS660 (A) and P. polymyxa DS842 (B).

MSMHBQ_2018_v54n4_354_f0004.png 이미지

Fig. 4. Change of β-1,3-glucanase activity of B. subtilis DS660 (A) and P. polymyxa DS842 (B) during incubation in LB medium.

Table 1. Biochemical characteristics of strain DS660 and DS842 by using API kit

MSMHBQ_2018_v54n4_354_t0001.png 이미지

Table 1. Continued

MSMHBQ_2018_v54n4_354_t0002.png 이미지

Table 2. Inhibition of target organism by culture supernatant of B. subtilis DS660 and P. polymyxa DS842 as determined by the agar well diffusion test

MSMHBQ_2018_v54n4_354_t0003.png 이미지

References

  1. Amani H, Muller MM, Syldatk C, and Hausmann R. 2013. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl. Biochem. Biotechnol. 170, 1080-1093. https://doi.org/10.1007/s12010-013-0249-4
  2. Ansari A, Aman A, Siddiqui NN, Iqbal S, and Qader SA. 2012. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak. J. Pharm. Sci. 25, 195-201.
  3. Ayed HB, Maalej H, Hmidet N, and Nasri M. 2015. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist. 3, 255-261. https://doi.org/10.1016/j.jgar.2015.07.001
  4. Banik A, Mukhopadhaya K, and Dangar TK. 2016. Characterization of $N_2$-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243, 799-812. https://doi.org/10.1007/s00425-015-2444-8
  5. Behravan J, Bazzaz BSF, and Malaekeh P. 2005. Survey of bacteriological contamination of cosmetic creams in Iran. Int. J. Dermatol. 44, 482-485. https://doi.org/10.1111/j.1365-4632.2005.01963.x
  6. Fridlender M, Inbar J, and Chet I. 1993. Biological control of soilborne plant pathogens by a ${\beta}$-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem. 25, 1211-1221. https://doi.org/10.1016/0038-0717(93)90217-Y
  7. Gomaa EZ. 2013. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz. Arch. Biol. Technol. 56, 259-268. https://doi.org/10.1590/S1516-89132013000200011
  8. Jiang J, Shi B, Zhu D, Cai Q, Chen Y, Li J, Qi K, and Zhang M. 2012. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Cont. 23, 338-344. https://doi.org/10.1016/j.foodcont.2011.07.027
  9. Kang SY, Lee SR, and Lee CY. 1977. Microbial production of yeast cell wall lytic enzyme. Korean J. Food Sci. Technol. 9, 97-105.
  10. Kang BR, Kim YH, Nam HS, and Kim YC. 2017. Correlation between biosurfactants and antifungal activity of a biocontrol bacterium, Bacillus amyloliquefaciens LM11. Res. Plant Dis. 23, 177-185. https://doi.org/10.5423/RPD.2017.23.2.177
  11. Ku JE, Han HS, and Song JH. 2013. The recent trend of the natural preservative used in cosmetics. Asian J. Beauty Cosmetol. 11, 835-844.
  12. Leelasuphakul W, Sivanunsakul P, and Phongpaichit S. 2006. Purification, characterization and synergistic activity of ${\beta}$-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb. Technol. 38, 990-997. https://doi.org/10.1016/j.enzmictec.2005.08.030
  13. Lim JH, Min BK, and Cho YK. 2001. Characterization of the bacterial cell wall lytic enzyme produces by Aspergillus sp. HCLF-4. Korean J. Microbiol. 37, 15-20.
  14. Lundov MD and Zachariae C. 2008. Recalls of microbiologically contaminated cosmetics in EU from 2005 to May 2008. J. Cosmet. Sci. 30, 471-474. https://doi.org/10.1111/j.1468-2494.2008.00475.x
  15. Nagarajkumar M, Bhaskaran R, and Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  16. Perez C, Suarez C, and Castro GR. 1992. Production of antimicrobials by Bacillus subtilis MIR 15. J. Biotechnol. 26, 331-336. https://doi.org/10.1016/0168-1656(92)90017-4
  17. Qiao N and Shao Z. 2013. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J. Appl. Microbiol. 108, 1207-1216.
  18. Rodrigues LR, Teixeira JA, van der Mei HC, and Oliveira R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces 49, 79-86. https://doi.org/10.1016/j.colsurfb.2006.03.003
  19. Salyers, AA, Palmer, JK, and Wilkins, TD. 1977. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 1118-1124.
  20. Seldin L, Silva de Azevedo F, Alviano DD, de Alviano CS, and de Freire Bastos MC. 1999. Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organism. Lett. Appl. Microbiol. 28, 423-427. https://doi.org/10.1046/j.1365-2672.1999.00563.x
  21. Sharma D and Saharan BS. 2014. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 698713.
  22. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 4, 845-857.
  23. von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, and Seldin L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95, 1143-1151. https://doi.org/10.1046/j.1365-2672.2003.02097.x
  24. White IR and Groot AC. 2006. Cosmetics and skin care products. In Frosch PJ, Menn T, and Lepoittevin JP. (eds.), Contact Dermatitis, 4th ed. Springer, Berlin, Germany.
  25. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, and McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56, 339-347. https://doi.org/10.1016/j.mimet.2003.11.001