DOI QR코드

DOI QR Code

여울과 소의 소리특성 비교 분석

Comparative Analysis on the Sound Characteristics of Riffles and Pools

  • 투고 : 2018.10.12
  • 심사 : 2018.12.07
  • 발행 : 2018.12.31

초록

본 논문은 자연 하천 내 여울과 소를 대상으로 소리를 측정하고 유속별 주파수 및 음압을 정량적으로 비교하는 것이 목적이다. 조사지역은 강원도 양양군 남대천 유역으로써 총 23개 사이트에 대한 소리를 분석하였다. 소리 측정은 하이드로 마이크폰을 사용하였으며 음향분석프로그램을 이용해 측정값을 분석하였다. 또한 조사 위치는 주변 소음이 없는 곳을 선정하였으며 측정위치는 여울과 소의 수심을 고려하였다. 분석 결과 여울 8개소와 소 15개소의 유속은 평균 0.515 m/s의 차이가 있었으며 유속에 따라 음압의 차이가 발생하는 것으로 나타났다. 음압의 경우 여울은 평균 176.8 dB, 소는 168.2 dB로 측정되어 약 8.6 dB의 차이를 보였다. 또한 최대음압 발생 시 주파수의 경우 여울은 200 Hz ~ 250 Hz로 일정한 범위를 보였지만 소에서는 200 Hz ~ 1,000 Hz까지 다양한 주파수에서 최대음압이 발생하였다. 향후 하천서식처별 자연적인 소리분포가 분석되면 생태하천 재현, 수중생물의 선호 음원개발 및 구조물 설계에 활용될 수 있을 것으로 판단된다.

This study quantified the sounds of riffles and pools in natural rivers and conducted a comparative analysis of the frequency and sound pressure per flow velocity. The surveyed area was Namdaecheon basin in Yangyang-gun, Gangwon-do and the sounds of a total of 23 sites were analyzed. A hydro microphone was used to measure the sound and analyze the data using an acoustic analysis program. The location was also selected at places with minimal ambient noise and the measurement points were the depth of riffles and pools. The results revealed an average difference of 0.515 m/s for flow velocity at 8 riffles and 15 pools. The difference in sound pressure occurred due to the flow velocity. In the case of sound pressure, it was measured at an average of 176.8 dB for riffles and 168.2 dB for pools, demonstrating a difference of approximately 8.6 dB. Furthermore, in the case of maximum sound pressure, riffles showed a constant range between 200 Hz and 250 Hz, while the pools exhibited maximum sound pressure at various frequencies from 200 Hz to 1,000 Hz. This revealed the ecological stream reproduction, development of preferred sound sources for aquatic life, and design of structures.

키워드

SHGSCZ_2018_v19n12_878_f0001.png 이미지

Fig. 1. Flowchart of this study

SHGSCZ_2018_v19n12_878_f0002.png 이미지

Fig. 2. Type of river bed of riffles and pools(a) riffle (b) pool

SHGSCZ_2018_v19n12_878_f0003.png 이미지

Fig. 3. Survey area location

SHGSCZ_2018_v19n12_878_f0004.png 이미지

Fig. 4. Sound measuring device

SHGSCZ_2018_v19n12_878_f0005.png 이미지

Fig. 5. Target of measurement(riffles)(a) site 1 (b) site 20

SHGSCZ_2018_v19n12_878_f0006.png 이미지

Fig. 6. Target of measurement(pools)(a) site 18 (b) site 23

SHGSCZ_2018_v19n12_878_f0007.png 이미지

Fig. 7. Measurement results for riffles(a)site 1 (b)site 4 (c)site 5 (d)site 9 (e)site 10(f)site 11 (g)site 20 (h)site 21

SHGSCZ_2018_v19n12_878_f0008.png 이미지

Fig. 8. Frequency compared to maximum soundpressure in riffles(a) sound pressure (b) frequency

SHGSCZ_2018_v19n12_878_f0009.png 이미지

Fig. 9. Measurement results for riffles(a) site 2 (b) site 3 (c) site 6 (d) site 7(e) site 8 (f) site 12 (g) site 13 (h) site 14(i) site 15 (j) site 16 (k) site 17 (l) site 18(m) site 19 (n) site 22 (o) site 23

SHGSCZ_2018_v19n12_878_f0010.png 이미지

Fig. 10. Frequency compared to maximum soundpressure in pools(a) sound pressure (b) frequency

SHGSCZ_2018_v19n12_878_f0011.png 이미지

Fig. 11. Comparison graph of flow velocity and sound pressure

Table 1. Survey area location and flow velocity

SHGSCZ_2018_v19n12_878_t0001.png 이미지

Table 2. Sound pressure and flow velocity in riffles

SHGSCZ_2018_v19n12_878_t0002.png 이미지

Table 3. Sound pressure and flow velocity in pools

SHGSCZ_2018_v19n12_878_t0003.png 이미지

Table 4. Comparison of test results and past results

SHGSCZ_2018_v19n12_878_t0004.png 이미지

참고문헌

  1. Korea Institute of construction technology, Development of fish barrier and attracting of fish using acoustic, 67p, KICT 2013-216, 2013.
  2. T. Geay, P. Belleudy, J. B. Laronne, B. Camenen, C. Gervaise, "Spectral variations of underwater river sounds", Earth surface processes and landforms, Vol.42, pp. 2447-2456, 2017. DOI: https://dx.doi.org/10.1002/esp.4208
  3. M. S. Bevelhimer, Z. D. Deng, C. Scherelis, "Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines", The Journal of the Acoustical Society of America, Vol.139, No.85, pp. 336-349, 2016. DOI: http://dx.doi.org/10.1121/1.4939120
  4. P. T. Arveson, D. J. Vendittis, "Radiated noise characteristics of a modern cargo ship", J. Acoust. Soc. Am., Vol.107, pp. 118-129, 2000. DOI: http://dx.doi.org/10.1121/1.428344
  5. S. Amoser, L. E. Wysocki, F. Ladich, "Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities," J. Acoust. Soc. Am., Vol.116, pp. 3789-3797. 2004. DOI: http://dx.doi.org/10.1121/1.1808219
  6. A. J. Brooks, T. Haeusler, I. Reinfelds, S. Williams, "Hydraulic micro habitats and the distribution of macro in verebrate assemblages in riffles", Freshwater Biology, Vol.50, pp. 331-344, 2005. https://doi.org/10.1111/j.1365-2427.2004.01322.x
  7. B. L. Southall, A. E. Bowles, W. T. Ellison, J. J. Finneran, R. L. Gentry, C. R. Greene, D. Jr, Kastak, D. R. Ketten, J. H. Miller, P. E. Nachtigall, "Marine mammal noise exposure criteria: initial scientific recommendations", Journal of the Acoustical Society of Americas, Vol.125, pp. 2517-2531, 2009. DOI: http://dx.doi.org/10.1121/1.4783461
  8. C. W. Clark, W. Ellison, B. Southall, L. Hatch, S. Van Parijs, A. Frankel, D. Ponirakis, "Acoustic masking in marine ecosystems: intuitions, analysis, and implication", Marine Ecology Progress Series, Vol. 395, pp. 201-222, 2009. DOI: http://dx.doi.org/10.3354/meps08402
  9. D. Tonolla, M. S. Lorang, K. Heutschi, K. Tockner, "A flume experiment to examine underwater sound generation by flowing water", Aquatic sciences, Vol.71, pp. 449-462, 2009. DOI: http://dx.doi.org/10.1007/s00027-009-0111-5
  10. L. T. Hatch, C. W. Clark, S. M. Van Parijs, A. S. Frankel, D. W. Ponirakis, "Quantifying loss of acoustic communication space for right whales in and around a US National Marine Sanctuary", Conservation Biology, Vol.26, No.6, pp. 983-994, 2012. https://doi.org/10.1111/j.1523-1739.2012.01908.x
  11. L. E. Wysocki, J. P. Dittami, F. Ladich, "Ship noise and cortisol secretion in European freshwater fishes", Biological Conservation, Vol.128, No.4, pp. 501-508, 2006. DOI: http://dx.doi.org/10.1016/j.biocon.2005.10.020
  12. A. Sverdrup, E. Kjellsby, P. G. Kruger, R. Floysand, F. R. Knudsen, P. S. Enger, G. Serck-Hanssen, K. B. Helle, "Effects of experimental seismic shock on vasoactivity of arteries, integrity of the vascular endothelium and on primary stress hormones of the Atlantic salmon", J. Fish Biol, Vol.45, pp. 973-995, 1994. DOI: http://dx.doi.org/10.1111/j.1095-8649.1994.tb01067.x
  13. A. Santulli, A. Modica, C. Messina, L. Ceffa, A. Curatolo, G. Rivas, G. Fabi, V. D'Amelio, "Biochemical responses of European Sea Bass Dicentrarchus labrax to the stress induced by off shore experimental seismic prospecting", Mar. Pollut. Bull, Vol.38, pp. 1105-1114, 1999. DOI: http://dx.doi.org/10.1016/S0025-326X(99)00136-8
  14. M. E. Smith, A. S. Kane, A. N. Popper, "Noise-induced stress response and hearing loss in goldfish Carassius auratus", J. Exp. Biol. Vol.207, pp. 427-435, 2004. DOI: http://dx.doi.org/10.1242/jeb.00755
  15. S. H. Kang, "Extraction of Watershed Information using GIS and Diurnal Flow Change in the Rapids and Pool by the Nature-Friendly River Work", Korean Society of Environmental Engineers, Vol.32, No.5, pp. 517-522, 2010.
  16. D. Tonolla, V. Acuna, M. S. Lorang, K. Heutschi, K. Tockner, "A field-based investigation to examine underwater soundscapes of five common river habitats", Hydrological processes, Vol.24, No.22, pp. 3146-3156, 2010. DOI: http://dx.doi.org/10.1002/hyp.7730