DOI QR코드

DOI QR Code

Study on Tensile Properties of AlSi10Mg produced by Selective Laser Melting

SLM 공정 기법으로 제작한 AlSi10Mg 인장특성에 관한 연구

  • Kim, Moosun (Urban Transit Research Team, Korea Railroad Research Institute)
  • 김무선 (한국철도기술연구원 도시철도연구팀)
  • Received : 2018.10.01
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

Selective Laser Melting is one of the representative 3D printing techniques for handling metal materials. The main factors influencing the characteristics of structures fabricated by the SLM method include the build-up angle of structures, laser power, laser scan speed, and scan spacing. In this study, the tensile properties of AlSi10Mg alloys were investigated by considering the build-up angle of tensile test specimens, laser scanning speed and scan spacing as variables. The yield stress, tensile strength, and elongation were considered as tensile properties. From the test results, it was confirmed that the yield stress values were lowered in the order of 0, 45, and 90 based on the manufacturing direction of the tensile specimen. The maximum yield stress value was obtained at 1870 mm / min based on the laser scan speed. The yield stress size decreased with decreasing scan speed. Based on the laser scan spacing, as the value increases, the yield stress increases, but the variation is smaller than the other test criteria. The tendency of the tensile strength and elongation variation depending on the test conditions was difficult to understand.

선택적 레이저 용융 (Selective Laser Melting) 기법은 금속 소재를 다루는 대표적인 3D 프린팅 기법중의 하나이다. SLM 기법으로 제작되는 구조물의 특성을 좌우하는 주요 제작 인자로는 구조물의 적층 제작 방향, 레이저 파워, 레이저 스캔 스피드 및 스캔 간격 등을 고려할 수 있다. 이번 연구에서는 AlSi10Mg 합금을 대상 소재로 하여, 인장 시편의 제작 방향, 레이저 스캔 스피드 및 스캔 간격을 변수로 하여, 인장특성 결과를 비교 분석하였다. 인장특성으로는 항복 응력, 인장강도 및 연신율을 고려하였다. 시험결과로부터, 인장 시편의 제작 방향 기준으로 0도, 45도, 90도 순서로 항복 응력 값이 낮아짐을 확인하였다. 레이저 스캔 스피드 기준으로는 1870mm/min에서 가장 큰 항복 응력값을 보였으며, 스캔 스피드가 낮아질수록 항복 응력 크기도 줄어들었다. 레이저 스캔 간격 기준으로, 그 크기가 증가할수록 항복 응력값은 증가하지만, 다른 시험 기준에 비해 그 변화폭은 가장 적었다. 인장강도 및 연신율은 시험조건에 따른 명확한 경향성을 파악하기 어려웠다.

Keywords

SHGSCZ_2018_v19n12_25_f0001.png 이미지

Fig. 1. Schematic diagram of main parameters of SLM

SHGSCZ_2018_v19n12_25_f0002.png 이미지

Fig. 2. Build-up angle of specimen

SHGSCZ_2018_v19n12_25_f0003.png 이미지

Fig. 3. Size of specimen [12]

SHGSCZ_2018_v19n12_25_f0004.png 이미지

Fig. 4. Completion of specimen production

SHGSCZ_2018_v19n12_25_f0005.png 이미지

Fig. 5. Results of (a) yield stress, (b) tensile strength and (c) elongation of all test cases according to the build-up angle

SHGSCZ_2018_v19n12_25_f0006.png 이미지

Fig. 7. Results of (a) yield stress, (b) tensile strength and (c) elongation according to the laser scan spacing

SHGSCZ_2018_v19n12_25_f0007.png 이미지

Fig. 6. Results of (a) yield stress, (b) tensile strength and (c) elongation according to the laser scan speed

Table 1. SLM processing parameters [10]

SHGSCZ_2018_v19n12_25_t0001.png 이미지

Table 2. Specimen conditions

SHGSCZ_2018_v19n12_25_t0002.png 이미지

References

  1. E.Olakanmi, "Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties", Journal of Materials Processing Technology, vol.213, issue.8, pp.1387-1405, 2013. DOI: https://doi.org/10.1016/j.jmatprotec.2013.03.009
  2. S.Dadbakhsh, L.Hao, P.Jerrard, D.Zhang, "Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture", Powder Technology, vol.231, pp.112-121, 2012. DOI: https://doi.org/10.1016/j.powtec.2012.07.061
  3. N.Read, W.Wang, K.Essa, M.Attallah, "Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development", Materials & Design, vol.65, pp.417-424, 2015. DOI: https://doi.org/10.1016/j.matdes.2014.09.044
  4. A.Simchi, H.Pohl, "Effect of laser sintering processing parameters on the microstructure and densification of iron powder", Materials Science and Engineering: A, vol.359, pp.119-128, 2003. DOI: https://doi.org/10.1016/s0921-5093(03)00341-1
  5. M.Dewidar, K.Dalgarno, C.Wright, "Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol.217, pp.1651-1662, 2003. DOI: https://doi.org/10.1243/095440503772680587
  6. W.Su, P.Erasenthiran, P.Dickens, "Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd:YAG laser", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.217, pp.127-138, 2003. DOI: https://doi.org/10.1243/095440603762554677
  7. N.Aboulkhair, N.Everitt, I.Ashcroft, C.Tuck, "Reducing porosity in AlSi10Mg parts processed by selective laser melting", Additive Manufacturing, vol.1-4, pp.77-86, 2014. DOI: https://doi.org/10.1016/j.addma.2014.08.001
  8. H.Niu, I.Chang, "Liquid phase sintering of M3/2 high speed steel by selective laser sintering", Scripta Materialia, vol.39, pp.67-72, 1998. DOI: https://doi.org/10.1016/s1359-6462(98)00126-2
  9. E.Olakanmi, K.Dalgarno, R.Cochrane, "Laser sintering of blended Al-.Si powders", Rapid Prototyping Journal, vol.18, pp.109-119, 2012. DOI: https://doi.org/10.1108/13552541211212096
  10. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, "Direct selective laser sintering of metals", Rapid Prototyping Journal, vol. 1, issue: 1, pp.26-36, 1995. DOI: https://doi.org/10.1108/13552549510078113
  11. K.Prashanth, S.Scudino, T.Maity, J.Das, J.Eckert, "Is the energy density a reliable parameter for materials synthesis by selective laser melting?" Materials Research Letters, vol.5, pp.386-390, 2017. DOI: https://doi.org/10.1080/21663831.2017.1299808
  12. ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2015. DOI : https://doi.org/10.1520/E0008_E0008M-15A
  13. E.Chlebus, B.Kuznicka, T.Kurzynowski, B.Dybala, "Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting", Materials Characterization, vol.62, pp.488-495, 2011. DOI: https://doi.org/10.1016/j.matchar.2011.03.006