DOI QR코드

DOI QR Code

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Il Kwon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2018.06.05
  • 심사 : 2018.12.07
  • 발행 : 2018.12.31

초록

Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

키워드

BHJRB9_2018_v31n6_355_f0001.png 이미지

Fig. 1. (a) Schematic of active material, CNT and PEDOT:PSS composite from ref [25], (b) free-standing graphene paper from ref [31], (c) SEM image of N-doped carbon foam with TiO2, (d) the magnified image, (e) Schematic of synthesis of the N-doped carbon foam with TiO2 from ref [32]

BHJRB9_2018_v31n6_355_f0002.png 이미지

Fig. 2. (a) Schematic of cellulose fibers wrapped by SWNTs, (b) charge-discharge of the SWNT/cotton and the one with MnO2, (c) Specific capacitance with respect to different current density from ref [38]

BHJRB9_2018_v31n6_355_f0003.png 이미지

Fig. 3. (a) A commercial cotton T-shirt, (b, c) activated carbon textiles (ACT), (d, e) SEM images of the ACT coated with MnO2 from ref [40]

BHJRB9_2018_v31n6_355_f0004.png 이미지

Fig. 4. (a) A functionalized graphene hydrogel (FGH) in the form of thin film, (b) SEM image of microstructures of the FGH, (c) a supercapacitor with the FGH from ref [41], (d-h) SEM images of the nickel-cobalt layered double hydroxide nanosheets on the textile substrate from ref [42]

BHJRB9_2018_v31n6_355_f0005.png 이미지

Fig. 5. (a) Schematic of CNT SC, (b) cyclic voltammetry of CNT SC from ref [46], (c) carbon-coated silicon NWs on the CF (c- Si NWs/CF), (d) SEM image of the c-Si NWs/CF, (e) chargedischarge of the c-Si NWs/CF, (f) rate capability with respect to cycle number from ref [47]

BHJRB9_2018_v31n6_355_f0006.png 이미지

Fig. 6. (a) SEM image of Coral structure of MnO2 on the CF (MnO2/CF), (b) cyclic voltammetry of MnO2/CF from ref [51], (c) SEM image of MnO2 nanoflower on the CC (MNF/ CC), (d) PPy-wraped MNF/CC, (e) cyclic voltammetry of the ASC, (f) ragon plot of the ASC from ref [52]

BHJRB9_2018_v31n6_355_f0007.png 이미지

Fig. 7. (a,b) SEM image of NiCo NW on the CC (NCNW/CC), (c) cyclic voltammetry of the NCNW/CC (d) charge-discharge of the NCNW/ CC from ref [54], (e) LED-on by LiCoO2//TiN, (f) charge-discharge of LiCoO2//TiN from ref [58]

BHJRB9_2018_v31n6_355_f0008.png 이미지

Fig. 8. (a) SEM image of reduced graphene oxide on the activated CC, (b) vanadium oxide on the activated CC, (c) LED-on by V2O5//Pin//rGO, (d) cyclic performance from ref [60]

BHJRB9_2018_v31n6_355_f0009.png 이미지

Fig. 9. (a) Schematics of preparation of interlinked solid polymer electrolyte (ISPE) and illustration (b, c) SEM images of ISPE from ref [64]

참고문헌

  1. Kutbee, A. T., Bahabry, R. R., Alamoudi, K. O., Ghoneim, M. T., Cordero, M. D., Almuslem, A. S., Gumus, A., Diallo, E. M., Nassar, J. M., Hussain, A. M., Khashab, N. M., and Hussain, M. M., "Flexible and Biocompatible High-performance Solid-state Micro-battery for Implantable Orthodontic System," npj Flexible Electronics, Vol. 1, No. 1, 2017, pp. 7. https://doi.org/10.1038/s41528-017-0008-7
  2. Zamarayeva, A. M., Ostfeld, A. E., Wang, M., Duey, J. K., Deckman, I., Lechene, B. P., Davies, G., Steingart, D. A., and Arias, A. C., "Flexible and Stretchable Power Sources for Wearable Electronics," Science Advances, Vol. 3, No. 6, 2017, e1602051. https://doi.org/10.1126/sciadv.1602051
  3. Hu, L., Wu, H., La Mantia, F., Yang, Y., and Cui, Y., "Thin, Flexible Secondary Li-Ion Paper Batteries," ACS Nano, Vol. 4, No. 10, 2010, pp. 5843-5848. https://doi.org/10.1021/nn1018158
  4. Dong, L., Xu, C., Li, Y., Huang, Z.-H., Kang, F., Yang, Q.-H., and Zhao, X., "Flexible Electrodes and Supercapacitors for Wearable Energy Storage: A Review by Category," Journal of Materials Chemistry A, Vol. 4, No. 13, 2016, pp. 4659-4685. https://doi.org/10.1039/C5TA10582J
  5. Yang, P., and Mai, W., "Flexible Solid-state Electrochemical Supercapacitors," Nano Energy, Vol. 8, No. 2014, pp. 274-290. https://doi.org/10.1016/j.nanoen.2014.05.022
  6. Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L. M., Armand, M., and Zhou, Z., "Single Lithiumion Conducting Solid Polymer Electrolytes: Advances and Perspectives," Chemical Society Reviews, Vol. 46, No. 3, 2017, pp. 797-815. https://doi.org/10.1039/C6CS00491A
  7. Koo, M., Park, K.-I., Lee, S. H., Suh, M., Jeon, D. Y., Choi, J. W., Kang, K., and Lee, K. J., "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems," Nano Letters, Vol. 12, No. 9, 2012, pp. 4810-4816. https://doi.org/10.1021/nl302254v
  8. Kim, J.-S., Ko, D., Yoo, D.-J., Jung, D. S., Yavuz, C. T., Kim, N.-I., Choi, I.-S., Song, J. Y., and Choi, J. W., "A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability," Nano Letters, Vol. 15, No. 4, 2015, pp. 2350-2357. https://doi.org/10.1021/nl5045814
  9. Li, L., Wu, Z., Yuan, S., and Zhang, X.-B., "Advances and Challenges for Flexible Energy Storage and Conversion Devices and Systems," Energy & Environmental Science, Vol. 7, No. 7, 2014, pp. 2101-2122. https://doi.org/10.1039/c4ee00318g
  10. Han, K. Y., Sang-Wook, W., Hye-Ran, J., Kyun, Y. H., Kitae, K., Hun, O. B., Soonho, A., Sang-Young, L., Seung-Wan, S., Jaephil, C., Heon-Cheol, S., and Young, K. J., "Cable-Type Flexible Lithium Ion Battery Based on Hollow Multi-Helix Electrodes," Advanced Materials, Vol. 24, No. 38, 2012, pp. 5192-5197. https://doi.org/10.1002/adma.201202196
  11. Meng, F., Li, Q., and Zheng, L., "Flexible Fiber-shaped Supercapacitors: Design, Fabrication, and Multi-functionalities," Energy Storage Materials, Vol. 8, No. 2017, pp. 85-109. https://doi.org/10.1016/j.ensm.2017.05.002
  12. Xu, J., Dou, S., Liu, H., and Dai, L., "Cathode Materials for Next Generation Lithium Ion Batteries," Nano Energy, Vol. 2, No. 4, 2013, pp. 439-442. https://doi.org/10.1016/j.nanoen.2013.05.013
  13. Wu, F., and Yushin, G., "Conversion Cathodes for Rechargeable Lithium and Lithium-ion Batteries," Energy & Environmental Science, Vol. 10, No. 2, 2017, pp. 435-459. https://doi.org/10.1039/C6EE02326F
  14. Goodenough, J. B., and Park, K.-S., "The Li-Ion Rechargeable Battery: A Perspective," Journal of the American Chemical Society, Vol. 135, No. 4, 2013, pp. 1167-1176. https://doi.org/10.1021/ja3091438
  15. Whittingham, M. S., "Lithium Batteries and Cathode Materials," Chemical Reviews, Vol. 104, No. 10, 2004, pp. 4271-4302. https://doi.org/10.1021/cr020731c
  16. Scrosati, B., and Garche, J., "Lithium Batteries: Status, Prospects and Future," Journal of Power Sources, Vol. 195, No. 9, 2010, pp. 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  17. Scrosati, B., Hassoun, J., and Sun, Y.-K., "Lithium-ion Batteries. A Look into the Future," Energy & Environmental Science, Vol. 4, No. 9, 2011, pp. 3287-3295. https://doi.org/10.1039/c1ee01388b
  18. Fergus, J. W., "Recent Developments in Cathode Materials for Lithium Ion Batteries," Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  19. Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N., "Nanostructured Carbon-metal Oxide Composite Electrodes for Supercapacitors: A Review," Nanoscale, Vol. 5, No. 1, 2013, pp. 72-88. https://doi.org/10.1039/C2NR32040A
  20. Wang, G., Zhang, L., and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chemical Society Reviews, Vol. 41, No. 2, 2012, pp. 797-828. https://doi.org/10.1039/C1CS15060J
  21. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., and Zhang, J., "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors," Chemical Society Reviews, Vol. 44, No. 21, 2015, pp. 7484-7539. https://doi.org/10.1039/C5CS00303B
  22. Liu, Q.-C., Xu, J.-J., Xu, D., and Zhang, X.-B., "Flexible Lithium-oxygen Battery Based on a Recoverable Cathode," Nature Communications, Vol. 6, No. 2015, pp. 7892. https://doi.org/10.1038/ncomms8892
  23. Mao, Y., Li, G., Guo, Y., Li, Z., Liang, C., Peng, X., and Lin, Z., "Foldable Interpenetrated Metal-organic Frameworks/carbon Nanotubes Thin Film for Lithium-sulfur Batteries," Nature Communications, Vol. 8, No. 2017, pp. 14628. https://doi.org/10.1038/ncomms14628
  24. Song, M.-K., Park, S., Alamgir, F. M., Cho, J., and Liu, M., "Nanostructured Electrodes for Lithium-ion and Lithium-air Batteries: the Latest Developments, Challenges, and Perspectives," Materials Science and Engineering: R: Reports, Vol. 72, No. 11, 2011, pp. 203-252. https://doi.org/10.1016/j.mser.2011.06.001
  25. Zheng, C., F., T. J. W., Chao, W., Zhenda, L., Nan, L., Alex, C., Lijia, P., Fei, W., Yi, C., and Zhenan, B., "A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes," Advanced Energy Materials, Vol. 4, No. 12, 2014, pp. 1400207. https://doi.org/10.1002/aenm.201400207
  26. Yao, J., Li, Y., Masse, R. C., Uchaker, E., and Cao, G., "Revitalized Interest in Vanadium Pentoxide as Cathode Material for Lithium-ion Batteries and Beyond," Energy Storage Materials, Vol. 11, No. 2018, pp. 205-259. https://doi.org/10.1016/j.ensm.2017.10.014
  27. Wu, N., Du, W., Liu, G., Zhou, Z., Fu, H.-R., Tang, Q., Liu, X., and He, Y.-B., "Synthesis of Hierarchical Sisal-Like $V_2O_5$ with Exposed Stable {001} Facets as Long Life Cathode Materials for Advanced Lithium-Ion Batteries," ACS Applied Materials & Interfaces, Vol. 9, No. 50, 2017, pp. 43681-43687. https://doi.org/10.1021/acsami.7b13944
  28. Zhang, Y., Wang, Y., Xiong, Z., Hu, Y., Song, W., Huang, Q.-A., Cheng, X., Chen, L.-Q., Sun, C., and Gu, H., "$V_2O_5$ Nanowire Composite Paper as a High-Performance Lithium-Ion Battery Cathode," ACS Omega, Vol. 2, No. 3, 2017, pp. 793-799. https://doi.org/10.1021/acsomega.7b00037
  29. Kong, D., Li, X., Zhang, Y., Hai, X., Wang, B., Qiu, X., Song, Q., Yang, Q.-H., and Zhi, L., "Encapsulating $V_2O_5$ into Carbon Nanotubes Enables the Synthesis of Flexible High-performance Lithium Ion Batteries," Energy & Environmental Science, Vol. 9, No. 3, 2016, pp. 906-911. https://doi.org/10.1039/C5EE03345D
  30. Perera, S. D., Patel, B., Nijem, N., Roodenko, K., Seitz, O., Ferraris, J. P., Chabal, Y. J., and Balkus Jr. K. J., "Vanadium Oxide Nanowire-Carbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors," Advanced Energy Materials, Vol. 1, No. 5, 2011, pp. 936-945. https://doi.org/10.1002/aenm.201100221
  31. Wang, D.-W., Li, F., Zhao, J., Ren, W., Chen, Z.-G., Tan, J., Wu, Z.-S., Gentle, I., Lu, G. Q., and Cheng, H.-M., "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode," ACS Nano, Vol. 3, No. 7, 2009, pp. 1745-1752. https://doi.org/10.1021/nn900297m
  32. Shiyong, C., Yijun, Z., Rui, C., Zhaobao, Z., Shenying, W., and Zongping, S., "Mesoporous and Nanostructured $TiO_2$ Layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries," Small, Vol. 12, No. 48, 2016, pp. 6724-6734. https://doi.org/10.1002/smll.201602179
  33. Chan, K.-Y., Jia, B., Lin, H., Hameed, N., Lee, J.-H., and Lau, K.-T., "A Critical Review on Multifunctional Composites as structural capacitors for energy storage," Composite Structures, Vol. 188, No. 2018, pp. 126-142. https://doi.org/10.1016/j.compstruct.2017.12.072
  34. Hagberg, J., Leijonmarck, S., and Lindbergh, G., "High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries," Journal of the Electrochemical Society, Vol. 163, No. 8, 2016, pp. A1790-A1797. https://doi.org/10.1149/2.0041609jes
  35. Yu, Y., Zhang, B., Feng, M., Qi, G., Tian, F., Feng, Q., Yang, J., and Wang, S., "Multifunctional Structural Lithium Ion Batteries Based on Carbon Fiber Reinforced Plastic Composites," Composites Science and Technology, Vol. 147, No. 2017, pp. 62-70. https://doi.org/10.1016/j.compscitech.2017.04.031
  36. Jin, L.-N., Shao, F., Jin, C., Zhang, J.-N., Liu, P., Guo, M.-X., and Bian, S.-W., "High-performance Textile Supercapacitor Electrode Materials Enhanced with Three-dimensional Carbon Nanotubes/graphene Conductive Network and in situ Polymerized Polyaniline," Electrochimica Acta, Vol. 249, No. 2017, pp. 387-394. https://doi.org/10.1016/j.electacta.2017.08.035
  37. Balogun, M.-S., Qiu, W., Lyu, F., Luo, Y., Meng, H., Li, J., Mai, W., Mai, L., and Tong, Y., "All-flexible Lithium Ion Battery Based on Thermally-etched Porous Carbon Cloth Anode and Cathode," Nano Energy, Vol. 26, No. 2016, pp. 446-455. https://doi.org/10.1016/j.nanoen.2016.05.017
  38. Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H. D., Choi, J. W., Han, S. M., and Cui, Y., "Stretchable, Porous, and Conductive Energy Textiles," Nano Letters, Vol. 10, No. 2, 2010, pp. 708-714. https://doi.org/10.1021/nl903949m
  39. Han, S. H., Oh, H. J., and Kim, S. S., "Evaluation of Fiber Surface Treatment on the Interfacial Behavior of Carbon Fiberreinforced Polypropylene Composites," Composites Part B: Engineering, Vol. 60, No. 2014, pp. 98-105. https://doi.org/10.1016/j.compositesb.2013.12.069
  40. Lihong, B., and Xiaodong, L., "Towards Textile Energy Storage from Cotton T-Shirts," Advanced Materials, Vol. 24, No. 24, 2012, pp. 3246-3252. https://doi.org/10.1002/adma.201200246
  41. Yuxi, X., Zhaoyang, L., Xiaoqing, H., Yang, W., Yu, H., and Xiangfeng, D., "Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors," Advanced Materials, Vol. 25, No. 40, 2013, pp. 5779-5784. https://doi.org/10.1002/adma.201301928
  42. Nagaraju, G., Raju, G. S. R., Ko, Y. H., and Yu, J. S., "Hierarchical Ni-Co Layered Double Hydroxide Nanosheets Entrapped on Conductive Textile Fibers: A Cost-effective and Flexible Electrode for High-performance Pseudocapacitors," Nanoscale, Vol. 8, No. 2, 2016, pp. 812-825. https://doi.org/10.1039/C5NR05643H
  43. Jian, Z., Shaochun, T., Juan, W., Xiling, S., Baogang, Z., and Xiangkang, M., "Wearable High-Performance Supercapacitors Based on Silver-Sputtered Textiles with $FeCo_2S_4$-$NiCo_2S_4$ Composite Nanotube-Built Multitripod Architectures as Advanced Flexible Electrodes," Advanced Energy Materials, Vol. 7, No. 2, 2017, pp. 1601234. https://doi.org/10.1002/aenm.201601234
  44. Wei, L., Zheng, C., Guangmin, Z., Yongming, S., Ryoung, L. H., Chong, L., Hongbin, Y., Zhenan, B., and Yi, C., "3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries," Advanced Materials, Vol. 28, No. 18, 2016, pp. 3578-3583. https://doi.org/10.1002/adma.201505299
  45. Chen, W., Rakhi, R. B., Hu, L., Xie, X., Cui, Y., and Alshareef, H. N., "High-Performance Nanostructured Supercapacitors on a Sponge," Nano Letters, Vol. 11, No. 12, 2011, pp. 5165-5172. https://doi.org/10.1021/nl2023433
  46. Hsu, Y.-K., Chen, Y.-C., Lin, Y.-G., Chen, L.-C., and Chen, K.-H., "High-cell-voltage Supercapacitor of Carbon Nanotube/carbon Cloth Operating in Neutral Aqueous Solution," Journal of Materials Chemistry, Vol. 22, No. 8, 2012, pp. 3383-3387. https://doi.org/10.1039/c1jm14716a
  47. Wang, X., Li, G., Seo, M. H., Lui, G., Hassan, F. M., Feng, K., Xiao, X., and Chen, Z., "Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries," ACS Applied Materials & Interfaces, Vol. 9, No. 11, 2017, pp. 9551-9558. https://doi.org/10.1021/acsami.6b12080
  48. Rujia, Z., Qian, L., Guanjie, H., Fung, Y. M., Kaibing, X., Junqing, H., P., P. I., Chun-Sing, L., and Wenjun, Z., "Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Li-Ion Batteries," Advanced Energy Materials, Vol. 7, No. 2, 2017, pp. 1601363. https://doi.org/10.1002/aenm.201601363
  49. Guanjie, H., Xiaoyu, H., Rujia, Z., Tingting, Z., Zhe, W., Soc-Man, H. K., Yao, L., Hailiang, W., Xiao, G. Z., and P., P. I., "A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Li-Ion Batteries," Advanced Functional Materials, Vol. 27, No. 4, 2017, pp. 1604903. https://doi.org/10.1002/adfm.201604903
  50. Xihong, L., Teng, Z., Xianghui, Z., Yongqi, S., Longyan, Y., Bin, H., Li, G., Jian, C., Yihua, G., Jun, Z., Yexiang, T., and Lin, W. Z., "WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors," Advanced Materials, Vol. 24, No. 7, 2012, pp. 938-944. https://doi.org/10.1002/adma.201104113
  51. Cakici, M., Kakarla, R. R., and Alonso-Marroquin, F., "Advanced Electrochemical Energy Storage Supercapacitors Based on the Flexible Carbon Fiber Fabric-coated with Uniform Coral-like $MnO_2$ Structured Electrodes," Chemical Engineering Journal, Vol. 309, No. 2017, pp. 151-158. https://doi.org/10.1016/j.cej.2016.10.012
  52. Tao, J., Liu, N., Li, L., Su, J., and Gao, Y., "Hierarchical Nanostructures of Polypyrrole@$MnO_2$ Composite Electrodes for High Performance Solid-state Asymmetric Supercapacitors," Nanoscale, Vol. 6, No. 5, 2014, pp. 2922-2928. https://doi.org/10.1039/c3nr05845j
  53. Liu, B., Zhang, J., Wang, X., Chen, G., Chen, D., Zhou, C., and Shen, G., "Hierarchical Three-Dimensional $ZnCo_2O_4$ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries," Nano Letters, Vol. 12, No. 6, 2012, pp. 3005-3011. https://doi.org/10.1021/nl300794f
  54. Laifa, S., Qian, C., Hongsen, L., and Xiaogang, Z., "Mesoporous $NiCo_2O_4$ Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage," Advanced Functional Materials, Vol. 24, No. 18, 2014, pp. 2630-2637. https://doi.org/10.1002/adfm.201303138
  55. Bae, S.-H., Kim, J.-E., Randriamahazaka, H., Moon, S.-Y., Park, J.-Y., and Oh, I.-K., "Seamlessly Conductive 3D Nanoarchitecture of Core-Shell Ni-Co Nanowire Network for Highly Efficient Oxygen Evolution," Advanced Energy Materials, Vol. 7, No. 1, 2017, pp. 1601492. https://doi.org/10.1002/aenm.201601492
  56. Changzhou, Y., Jiaoyang, L., Linrui, H., Xiaogang, Z., Laifa, S., and Wen, L. X., "Ultrathin Mesoporous $NiCo_2O_4$ Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors," Advanced Functional Materials, Vol. 22, No. 21, 2012, pp. 4592-4597. https://doi.org/10.1002/adfm.201200994
  57. Balogun, M.-S., Zeng, Y., Qiu, W., Luo, Y., Onasanya, A., Olaniyi, T. K., and Tong, Y., "Three-dimensional Nickel Nitride (Ni3N) Nanosheets: Free Standing and Flexible Electrodes for Lithium Ion Batteries and Supercapacitors," Journal of Materials Chemistry A, Vol. 4, No. 25, 2016, pp. 9844-9849. https://doi.org/10.1039/C6TA02492K
  58. Balogun, M.-S., Yu, M., Li, C., Zhai, T., Liu, Y., Lu, X., and Tong, Y., "Facile Synthesis of Titanium Nitride Nanowires on Carbon Fabric for Flexible and High-rate Lithium Ion Batteries," Journal of Materials Chemistry A, Vol. 2, No. 28, 2014, pp. 10825-10829. https://doi.org/10.1039/C4TA00987H
  59. Li, L., Peng, S., Chen, H.-Y., Han, X., Cheng, F., Srinivasan, M., Adams, S., Ramakrishna, S., and Chen, J., "Polypyrrole-coated Hierarchical Porous Composites Nanoarchitectures for Advanced Solid-state Flexible Hybrid Devices," Nano Energy, Vol. 19, No. 2016, pp. 307-317. https://doi.org/10.1016/j.nanoen.2015.11.026
  60. Zhou, X., Chen, Q., Wang, A., Xu, J., Wu, S., and Shen, J., "Bamboo-like Composites of $V_2O_5$/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors," ACS Applied Materials & Interfaces, Vol. 8, No. 6, 2016, pp. 3776-3783. https://doi.org/10.1021/acsami.5b10196
  61. Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P., Ebrahimi, M., Mai, W., Wong, C. P., and Wang, Z. L., "Low-Cost High- Performance Solid-State Asymmetric Supercapacitors Based on $MnO_2$ Nanowires and $Fe_2O_3$ Nanotubes," Nano Letters, Vol. 14, No. 2, 2014, pp. 731-736. https://doi.org/10.1021/nl404008e
  62. Balo, L., Shalu, Gupta, H., Kumar Singh, V., and Kumar Singh, R., "Flexible Gel Polymer Electrolyte Based on Ionic Liquid EMIMTFSI for Rechargeable Battery Application," Electrochimica Acta, Vol. 230, No. 2017, pp. 123-131. https://doi.org/10.1016/j.electacta.2017.01.177
  63. Zhong, X., Tang, J., Cao, L., Kong, W., Sun, Z., Cheng, H., Lu, Z., Pan, H., and Xu, B., "Cross-linking of Polymer and Ionic Liquid as High-performance Gel Electrolyte for Flexible Solid-state Supercapacitors," Electrochimica Acta, Vol. 244, No. 2017, pp. 112-118. https://doi.org/10.1016/j.electacta.2017.05.110
  64. Porcarelli, L., Gerbaldi, C., Bella, F., and Nair, J. R., "Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries," Scientific Reports, Vol. 6, No. 2016, pp. 19892. https://doi.org/10.1038/srep19892
  65. Kim, S.-H., Choi, K.-H., Cho, S.-J., Kil, E.-H., and Lee, S.-Y., "Mechanically Compliant and Lithium Dendrite Growth-suppressing Composite Polymer Electrolytes for Flexible Lithiumion Batteries," Journal of Materials Chemistry A, Vol. 1, No. 16, 2013, pp. 4949-4955. https://doi.org/10.1039/c3ta10612h
  66. Kim, S.-H., Choi, K.-H., Cho, S.-J., Park, J.-S., Cho, K. Y., Lee, C. K., Lee, S. B., Shim, J. K., and Lee, S.-Y., "A Shape-deformable and Thermally Stable Solid-state Electrolyte Based on a Plastic Crystal Composite Polymer Electrolyte for Flexible/safer Lithium-ion Batteries," Journal of Materials Chemistry A, Vol. 2, No. 28, 2014, pp. 10854-10861. https://doi.org/10.1039/C4TA00494A