DOI QR코드

DOI QR Code

20mm 범용탄약적재장비의 복합재 이중리드나선구조 설계

Stress Analysis of Composite Double Lead Spiral in 20mm Universal Ammunition Loading System

  • Je, Hyun-Min (Department of Aerospace Engineering, Pusan National University) ;
  • Kim, Wie-Dae (Department of Aerospace Engineering, Pusan National University)
  • 투고 : 2018.12.10
  • 심사 : 2018.12.13
  • 발행 : 2018.12.31

초록

본 연구에서는 20mm 범용탄약적재장비의 운행 시 탄약의 운동에 관여하는 이중리드나선의 설계를 위해 이중리드나선에 발생하는 응력과 변형에 대하여 ABAQUS 프로그램을 이용해서 해석한다. 해석을 위해 복합재를 적용한 나선형 물체의 회전 시 발생하는 응력 해석의 타당성을 확인한다. 이중리드나선의 재료를 일반 금속과 복합재로 적용하여 해석하고 모델을 복합재료로 대체 하였을 때 이점을 제시한다. 또한 복합재료의 적층각과 적층순서, 회전속도의 변경 시에 발생하는 응력과 변형을 예측하고, Tsai-Wu failure 이론에 해석결과를 적용하여 파손을 확인하며. 탄약적재시 스텝의 개발을 위한 복합재 이중나선구조의 설계결과를 제시한다.

This paper addresses the stress analysis and design of composite double lead spiral which is boarded in 20mm universal ammunition drum by finite element method. The spiral system is very important to transfer the ammunition in stable and reliable manners for aircraft. Some verifications are done to check the possibility of composite application in spiral system. The design variables, stacking sequence and fiber orientation angles, are investigated for reliable design for practical design. The Tsai-Wu failure theory is applied to see the safety of the spiral structure. The design result is suggested to manufacture the double lead spiral part.

키워드

BHJRB9_2018_v31n6_340_f0001.png 이미지

Fig. 1. Figure of 20mm universal ammunition drum

BHJRB9_2018_v31n6_340_f0002.png 이미지

Fig. 2. Drum assembly including ammunition

BHJRB9_2018_v31n6_340_f0003.png 이미지

Fig. 3. Boundary conditions of reference model

BHJRB9_2018_v31n6_340_f0004.png 이미지

Fig. 4. Basic fiber stacking direction

BHJRB9_2018_v31n6_340_f0005.png 이미지

Fig. 5. 4-cases to find stress along radius

BHJRB9_2018_v31n6_340_f0006.png 이미지

Fig. 6. Radial and tangential stress along radius in 4 cases

BHJRB9_2018_v31n6_340_f0007.png 이미지

Fig. 7. Mesh of drum assembly

BHJRB9_2018_v31n6_340_f0008.png 이미지

Fig. 8. Boundary conditions of model

BHJRB9_2018_v31n6_340_f0009.png 이미지

Fig. 9. Load conditions of model

BHJRB9_2018_v31n6_340_f0010.png 이미지

Fig. 10. Principal stress distributions of basic model

BHJRB9_2018_v31n6_340_f0011.png 이미지

Fig. 11. Stress and displacement through path line

BHJRB9_2018_v31n6_340_f0012.png 이미지

Fig. 12. Radial and tangential stress along radius in 4-cases

BHJRB9_2018_v31n6_340_f0013.png 이미지

Fig. 13. Comparison between standard model and each case

Table 1. Values of shaft & lead spiral model

BHJRB9_2018_v31n6_340_t0001.png 이미지

Table 2. Analysis results of reference model

BHJRB9_2018_v31n6_340_t0002.png 이미지

Table 3. Material properties of composite

BHJRB9_2018_v31n6_340_t0003.png 이미지

Table 4. Values of drum assembly model

BHJRB9_2018_v31n6_340_t0004.png 이미지

Table 5. Material properties of aluminum (2014-T6)

BHJRB9_2018_v31n6_340_t0005.png 이미지

Table 6. Engineering strength of composite material

BHJRB9_2018_v31n6_340_t0006.png 이미지

Table 7. Comparison of aluminum and composite material

BHJRB9_2018_v31n6_340_t0007.png 이미지

Table 8. Failure of each ply

BHJRB9_2018_v31n6_340_t0008.png 이미지

Table 9. Maximum results of each case with respect to the change of stacking sequence

BHJRB9_2018_v31n6_340_t0009.png 이미지

Table 10. Changes in principal stress, displacement and failure index with respect to rotating velocity

BHJRB9_2018_v31n6_340_t0010.png 이미지

참고문헌

  1. (International Journal) Iwan, W.D., and Moeller, T.L., "The Stability of a Spinning Elastic Disk with a Transverse Load System," Journal of Applied Mechanics, Vol. 43, No. 3, 1976, pp. 485-490. https://doi.org/10.1115/1.3423896
  2. (International Journal) Kirkhope, J., and Wilson, G.J., "Vibration and Stress Analysis of Thin Rotating Discs Using Annular Finite Elements," Journal of Sound and Vibration, Vol. 44, No. 4, 1976, pp. 461-474. https://doi.org/10.1016/0022-460X(76)90088-2
  3. (Korean Journal) Koo, K.-N., "In-plane Stress Analysis of Relating Composite Disks," Composites Research, Vol. 18, No. 4, 2005, pp. 8-13.
  4. (Korean Journal) Koo, K.-N., "Stress and Vibration Analysis of Rotating Laminated Composite Disks," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 9, 2006, pp. 982-989. https://doi.org/10.5050/KSNVN.2006.16.9.982
  5. (Korean Journal) Han, G.J., Lee, S.W., Shim, J.J., Han, D.S., Ahn, C.W., Suh, Y.K., and Kim, T.H., "Stress and Vibration Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge," Journal of the Korean Society for Precision Engineering, Vol. 20, No. 9, 2003, pp. 118-125.
  6. (Korean Journal) Park, J.K., Kim, Y.H., and Ha, S.K., "Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis," Journal of the Korean Society for Precision Engineering, Vol. 15, No. 1, 1998, pp. 130-136.
  7. (Book) Jones, Robert M., and C. W. Bert, "Mechanics of composite materials," 1975, pp. 748-748.
  8. (Book) Daniel, Isaac M., et al. Engineering Mechanics of Composite Materials. Vol. 3. New York: Oxford University Press, 1994.