DOI QR코드

DOI QR Code

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite

유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향

  • Kim, Neul-Sae-Rom (R&D Dept, LARGE CO., LTD.) ;
  • Lee, Eun-Soo (Hybrid New Material Division, Korea Dyeing and Finishing Technology Institute) ;
  • Jang, Yeong-Jin (R&D Dept, LARGE CO., LTD.) ;
  • Kwon, Dong-Jun (Hybrid New Material Division, Korea Dyeing and Finishing Technology Institute) ;
  • Yang, Seong Baek (Hybrid Nano Materials Lab, Department of Advanced Organic Materials Science and Engineering, Kyung-pook National University) ;
  • Yeom, Jung-Hyun (Hybrid Nano Materials Lab, Department of Advanced Organic Materials Science and Engineering, Kyung-pook National University)
  • Received : 2018.12.14
  • Accepted : 2018.12.29
  • Published : 2018.12.31

Abstract

In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

다양한 산업군에서 복합재료를 적용한 제품개발을 진행하고 있는 상황이며, 재활용이 가능한 장점으로 인해 열가소성 복합재료에 대한 개발이 활발하다. 장섬유 강화 열가소성 플라스틱(Long fiber thermoplastic, LFT)의 형태도 있지만, 연속섬유를 이용한 열가소성 복합재료(Continuous fiber thermoplastic, CFT)에 대한 활용도 증가하고 있다. 본 연구에서는 CFT를 제작할 때 사용되는 강화섬유의 제직 패턴에 따른 영향으로 CFT의 인장, 굴곡, 충격 강도의 변화를 확인하고자 하였다. 복합재료의 물성이 강화섬유의 제직 패턴에 의해 달라지는 원인을 기계적인 물성으로도 평가하였고, CT 촬영기법을 이용하여 내부 기공발생과 섬유 제직패턴과의 상관관계를 분석하였다. CFT의 경우 열가소성 필름이 섬유 로빙 내로 함침되는 수준이 낮기 때문에, 공극의 발생률이 높은 문제가 있다. 섬유 로빙과 로빙사이의 계면이 $100{\mu}m$ 수준으로 조밀하게 형성될 수 있는 평직 섬유 패턴이 CFT의 성형성 및 기계적 물성을 안정화시키는 강화섬유의 조직임을 검증하였다.

Keywords

BHJRB9_2018_v31n6_317_f0001.png 이미지

Fig. 1. Type of GF fabric pattern: (a) plain fabric (PF); (b) twill (T);and (C)warp satin (WS)

BHJRB9_2018_v31n6_317_f0002.png 이미지

Fig. 2. Continuous compression molding (CCM) machine by Large

BHJRB9_2018_v31n6_317_f0003.png 이미지

Fig. 3. Test piece of CFT plate by fabric pattern : (a) Tensile strength; (b) Flexural strength; (C) Impact strength (from the Plain, Twill, Sarin)

BHJRB9_2018_v31n6_317_f0004.png 이미지

Fig. 4. Tensile strength of CFT with different reinforcement pattern

BHJRB9_2018_v31n6_317_f0005.png 이미지

Fig. 5. Flexural strength of CFT with different reinforcement pattern

BHJRB9_2018_v31n6_317_f0006.png 이미지

Fig. 6. Izod strength of CFT with different reinforcement pattern

BHJRB9_2018_v31n6_317_f0007.png 이미지

Fig. 7. Vv of CFT with different reinforcement pattern

BHJRB9_2018_v31n6_317_f0008.png 이미지

Fig. 8. Results of side slice image of CFT with different reinforcement pattern using CT: (a) WS; (b) T; and (c) PF

References

  1. (International Journal) Vaidya, U.K., and Chawla, K.K., "Processing of Fibre Reinforced Thermoplastic Composites", International Materials Reviews, Vol. 53, No. 4, 2008, pp. 185-218. https://doi.org/10.1179/174328008X325223
  2. (Korean Journal) Park, D.-C., Park, C.-W., Shin, D.-H., and Kim, Y.-H., "A Study on Crystallization of Thermoplastic Aromatic Polymer," The Journal of the Korean Society for Composite Materials, Vol. 31, No. 4, 2018, pp. 122-127.
  3. (Korean Journal) Ryoo, H.W., Lee, D.G., and Kim, E.G., "An Effect of Fiber Length on the Correlation between Separation and Orientation of Flow Molded Fiber-Reinforced Polymeric Composites", The Journal of the Korean Society for Composite Materials, Vol. 6, No. 1, 1993, pp. 19-28.
  4. (International Journal) Naik, R.A., "Failure Analysis of Woven and Braided Fabric Reinforced Composites", Journal of Composite Materials, Vol. 29, No. 17, 1995, pp. 2334-2363. https://doi.org/10.1177/002199839502901706
  5. (Korean Journal) Kim, J.-W., and Lee, D.-G., "Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites", The Journal of the Korean Society for Composite Materials, Vol. 20, No. 5, 2007, pp. 13-19.
  6. (International Journal) Jarukumjorn, K., and Suppakarn, N., "Effect of Glass Fiber Hybridization on Properties of Sisal Fiber-polypropylene Composites", Composites Engineering, Vol. 40, No. 7, 2009, pp. 623-627. https://doi.org/10.1016/j.compositesb.2009.04.007
  7. (Korean Journal) Hwang, Y.-T., Lim, J.-Y., Nam, B.-G., and Kim, H.-S., "Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites", The Journal of the Korean Society for Composite Materials, Vol. 31, 5, 2018, pp. 276-281.
  8. (Proceeding) Kilic, M.H., "Three-dimensional Micromechanical Models for the Nonlinear Analysis of Pultruded Composite Structures", Georgia Institute of Technology, 2001.
  9. (International Journal) Gardiner, G., "Aerospace-grade Compression Molding: Continuous Compression Molding Process Produces Structures 30 Percent Lighter than Aluminum at Costs that have Both Airbus and Boeing Sold", High Performance Composites, Vol. 18, No. 4, 2010, pp. 34-40.
  10. (Korean Journal) Song, S.A., On, S.Y., Park, G.E., and Kim, S.S., "Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites", The Journal of the Korean Society for Composite Materials, Vol. 30, No. 6, 2017, pp. 365-370.
  11. (Korean Journal) Lee, W., Um, M.-K., Byun, J.-H., and Cao, J., "Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests", The Journal of the Korean Society for Composite, Vol. 22, No. 1, 2009, pp. 15-21.
  12. (Korean Journal) Jeon, K.-W., Shin, K.-B., and Kim, J.-S., "A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application", The Journal of the Korean Society for Composite, Vol. 23, No. 5, 2010, pp. 22-29.