DOI QR코드

DOI QR Code

A Study on the Effect of the ICCP System in Reinforced Concrete Specimens of Slab Type

  • Jeong, Jin-A (Department of Ship Operation, Korea Maritime & Ocean University) ;
  • Ko, Kwon-Heum (Department of Marine Engineering, Graduate School, Korea Maritime & Ocean University) ;
  • Kim, Mun-Su (Department of Marine Engineering, Graduate School, Korea Maritime & Ocean University) ;
  • Lee, Du-Hyeong (Department of Marine Engineering, Graduate School, Korea Maritime & Ocean University)
  • 투고 : 2018.11.12
  • 심사 : 2018.12.03
  • 발행 : 2018.12.31

초록

Reinforced concrete (RC) has been used as a construction material in various environments, such as airports, bridges, and ocean concrete structures, etc. Over time, however, rebar in the concrete is prone to corrosion from environmental forces and structural defects of the concrete. Cathodic protection (CP) was invented to prevent problems with corrosion and is widely used for different applications. Cathodic protection is divided into two types: sacrificial anode cathodic protection (SACP) and impressed current cathodic protection (ICCP). There are several limitations to the use of sacrificial anode cathodic protection in complex reinforced concrete structures, including concrete resistivity, throwing power of the CP, and environmental conditions. These limitations can affect the protection performance of SACP. Therefore, we used impressed current cathodic protection in our study. We tested Ti-Mesh, Ti-Rod, and Ti-Ribbon anodes in slab type reinforced concrete specimens. Electrochemical tests were conducted to confirm the impressed current cathodic protection performance under different environmental conditions.

키워드

E1COB2_2018_v17n6_272_f0001.png 이미지

Fig. 1 Dimension of slab type specimen.

E1COB2_2018_v17n6_272_f0002.png 이미지

Fig. 2 Ti-Ribbon and Ti-Mesh anode grouted by mortar.

E1COB2_2018_v17n6_272_f0003.png 이미지

Fig. 3 Installation of 3 types of anode in RC specimens.

E1COB2_2018_v17n6_272_f0004.png 이미지

Fig. 4 Picture of cathodic protection test on the RC specimens.

E1COB2_2018_v17n6_272_f0005.png 이미지

Fig. 5 Schematic diagram of slab type specimen installed anode and reference electrodes for cathodic protection.

E1COB2_2018_v17n6_272_f0006.png 이미지

Fig. 6 The variation of cathodic protection potential in different anodes and experimental environments.

E1COB2_2018_v17n6_272_f0007.png 이미지

Fig. 7 Potential shift variation of RC specimen applied with a Ti-Ribbon anode.

E1COB2_2018_v17n6_272_f0008.png 이미지

Fig. 8 Potential shift variation of the RC specimen applied with a Ti-Ribbon anode and a Ti-Rod anode.

E1COB2_2018_v17n6_272_f0009.png 이미지

Fig. 9 Potential shift variation of the RC specimen applied with a Ti-Ribbon anode and a Ti-Mesh anode.

Table 1 Detail contents of the reinforced concrete specimen

E1COB2_2018_v17n6_272_t0001.png 이미지

참고문헌

  1. K. Subbiah, S. Velu, S. -J. Kwon, H. -S. Lee, N. Rethinam, and D.-J. Park, Electrochim. Acta, 259, 1129 (2018). https://doi.org/10.1016/j.electacta.2017.10.088
  2. F. J. Luna Molina, M. C. Alonso Alonso, M. Sanchez Moreno, and R. Jarabo Centenero, Constr. Build. Mater., 156, 468 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.002
  3. M. Cabrini, S. Lorenzi, T. Pastore, and S. Pellegrini, Corros. Sci. Tech., 17, 203 (2018).
  4. Moe M. S. Cheung and C. Cao, Constr. Build. Mater., 45, 199 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.010
  5. T. J. Kim, K. A. Kim, J. Y. Lee, and H. J. Jang, Corros. Sci. Tech., 17, 225 (2018).
  6. B. Sanz, J. Planas, and Jose M. Sancho, Constr. Build. Mater., 160, 598 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.093
  7. G. T. Parthiban, T. Parthiban, R. Ravi, V. Saraswathy, N. Palaniswamy, and V. Sivan, Corros. Sci., 50, 3329 (2008). https://doi.org/10.1016/j.corsci.2008.08.040
  8. S. H. Xing, Y. Li, H. Q. Song, Y. G. Yan, and M. X. Sun, Ocean Eng., 113, 144 (2016). https://doi.org/10.1016/j.oceaneng.2015.12.047
  9. E. Redaelli, F. Lollini, and L. Bertolini, Constr. Build. Mater., 39, 95 (2013). https://doi.org/10.1016/j.conbuildmat.2012.05.014
  10. Ph. Refait, M. Jeannin, R. Sabot, H. Antony, and S. Pineau, Corros. Sci. 90, 375 (2015). https://doi.org/10.1016/j.corsci.2014.10.035
  11. C. Christodoulou, G. Glass, J. Webb, S. Austin, and C. Goodier, Corros. Sci., 52, 2671 (2010). https://doi.org/10.1016/j.corsci.2010.04.018
  12. G. Qiao, B. Guo, J. Ou, F. Xu, and Z. Li, Constr. Build. Mater., 119, 260 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.012
  13. X. Xi and S. Yang, Constr. Build. Mater., 155, 114 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.051
  14. K. Wilson, M. Jawed, amd V. Ngala, Constr. Build. Mater., 39, 19 (2013). https://doi.org/10.1016/j.conbuildmat.2012.05.037
  15. B. Zhou, X. Gu, H. Guo, W. Zhang, Q. Huang, Constr. Build. Mater., 164, 877 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.187
  16. J. Carmona Calero, M.A. Climent Llorca, and P. Garces Terradillos, J. Electroanal. Chem., 793, 8 (2017). https://doi.org/10.1016/j.jelechem.2016.08.029
  17. L. Bertolini and E. Redaelli, Corros. Sci., 51, 2218 (2009). https://doi.org/10.1016/j.corsci.2009.06.012
  18. L. Bertolini, M. Gastaldi, M. Pedeferri, and E. Redaelli, Corros. Sci., 44, 1497 (2002). https://doi.org/10.1016/S0010-938X(01)00168-8
  19. P. V. Bahekar and S. S. Gadve, Constr. Build. Mater., 156, 242 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.145
  20. M. S. Anwar, B. Sujitha, and R. Vedalakshmi, Constr. Build. Mater., 71, 167 (2014). https://doi.org/10.1016/j.conbuildmat.2014.08.032
  21. J-h Zhu, M-n Su, J-y Huang, T. Ueda, and F. Xing, Constr. Build.Mater., 167, 669, (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.096
  22. J. Xu and W. Yao, Constr. Build. Mater., 23, 2220 (2009). https://doi.org/10.1016/j.conbuildmat.2008.12.002