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Abstract

With the exponential developments of social network, their fundamental role as a medium to spread information, ideas, and

influence has gained importance. It can be expressed by the relationships and interactions within a group of individuals.

Therefore, some models and researches from various domains have been in response to the influence maximization problem for

the effects of “word of mouth” of new products. For example, in reality, more than two related social groups such as commercial

companies and service providers exist within the same market issue. Under such a scenario, they called social adversaries

competitively try to occupy their market influence against each other. To address the influence maximization (IM) problem

between them, we propose a novel IM problem for social adversarial players (IM-SA) which are exploiting the social network

attributes to infer the unknown adversary’s network configuration. We sophisticatedly define mathematical closed form to

demonstrate that the proposed scheme can have a near-optimal solution for a player.

Index Terms: Novel influence maximization, Social adversaries, Social networks, Word of mouth spreading effect

I. INTRODUCTION

Online social networks (OSNs) have become popular these

days, and as OSNs grow, the commercial markets expand

their presence in social commerce, online shopping, and so

on. Commercial promoters or company owners undertake

campaigns to reward the most influential users (power blog-

gers or reviewers) with prizes or money in order to exploit

their ability for viral marketing (i.e., word-of-mouth). The

underlying assumption is that when people make their deci-

sions, they are likely to be affected by their friends or col-

leagues [1]. Sociology describes friendship as formulated

based on homophily, which consists of two major forces

between friends, selection and social influence [2]. Selection

is a process where one chooses friends with similar charac-

teristics, and social influence refers to the process where one

modifies his/her own behavior to adapt to friends’ behavior.

In the 1990s, viral marketing with homophily in social net-

work was studied to understand how new products could

effectively spread over social networks [3-5]. Many studies

have focused on the ways to maximize influence in OSNs by

selecting a given number of seed users.

The influence maximization (IM) problem is formally

defined as “the problem of finding a small subset of nodes in

a social network that could maximize the spread of influ-

ence” [6]. Two probabilistic models are introduced to mathe-

matically represent IM, the independent cascade (IC) [7-9]

and the linear threshold (LT) [10, 11]. However, Kempe et

al. [1] proved that both the models are NP-hard and pro-

posed a greedy approximation algorithm to ensure the opti-
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mum to within a factor of (1–1/e) (where e is the base of the

natural logarithm): start with the empty set followed by

repeated addition of an element that gives the maximum

marginal gain.

Leskovec et al. [12] proposed an optimized greedy algo-

rithm called ‘Cost-effective Lazy Forward’ which is 700

times faster than a simple greedy algorithm. Wang et al. [13]

presented a community-based greedy algorithm for mining

top-k influential nodes in mobile social networks. Bhagat et

al. [14] maximized product adoption in social networks

based on user awareness. Li et al. [15] provided influence

diffusion dynamics and influence maximization in social net-

works with friend and foe relationships.

The basis for the IM is to consider a social network as a

graph (directed or undirected) with a set of nodes and edges.

The existing researches state solving the IM problems in a

network based on the relationships between the users by

considering either positive or negative relationships. How-

ever, in reality, more than two social networks (i.e., players)

can exist (e.g., commercial companies or service providers)

within the same market sector. For example, Verizon and

AT&T are rivals in the telecommunications market in the

US, and RenRen and Facebook could be the plausible adver-

saries in the global OSN market. In the case of coexistence

in the market, the two social players attempt to maximize

their market influence against each other. 

To address the IM problem between the social adversaries,

initially, we have introduced the IM problem for social

adversarial players (IM-SA). We have mathematically for-

mulated the IM-SA and proposed a novel approach that can

provide a near-optimal solution for a given player. We have

exploited the concepts of centrality and of a probabilistic

clustering coefficient to infer the unknown adversary’s net-

work structure. To the best of our knowledge, our approach

is the first step to formulate the problem in detail and to pro-

vide a solution for the IM-SA.

Our contributions are as follows:

We have introduced the IM-SA problem with respect to

the influence maximization domain and provided a near-opti-

mal solution using a social network theory.

We have designed and evaluated a novel algorithm to

solve IM-SA, and validated our algorithm by generating

graph dataset which has two clusters. Our proposed algo-

rithm presents better performance than that of the previously

reported greedy scheme [1].

The rest of this paper is organized as follows. In Section

II, we have introduced related works on IM problem with the

adversarial environment. In Section III, we have mentioned

the background and problem definition of the proposed

scheme. Section IV presents the design of a system model

that includes the adversarial relationship, assumptions, and

provides an explanation of the functioning of the proposed

scheme. The evaluation and performance analysis are pre-

sented in Section V. Finally, a conclusion is presented in

Section VI.

II. RELATED WORK

There are few existing studies on IM problem with the

adversarial environment and deal with the spread of influ-

ence of competing products, opinions, and technologies. In

the real world, there are more competitive propagation cases

than single influence propagation ones and the fundamental

reason for this phenomenon is not only the existence of sev-

eral promoters in the real market but also that their products

and target groups are likely to be similar. For this reason, a

few existing studies on IM problem point out that we should

identify the effects of the adversary or competitor in IM

problem. 

Most of the papers on IM problem deal with LT and IC

model for the multiple and competitive influence diffusions

[16-18]. Borodin et al. [16] used two threshold values for the

competitive influence between the two promoter groups.

And, the authors present a number of fairly natural and gen-

eral approaches for the spread of the approximation technology.

He et al. [17] studied the influence blocking maximization

in OSN under the competitive LT model and the researchers

work focused on the ways to block the influence diffusion of

an adversary group to the maximum possible extent.

Bharathi et al. [18] utilized the IC model to model competi-

tive influence. The researchers introduced first-mover strate-

gies and second-mover strategies for the two-player game in

OSN.

A reported study [19] divided influence propagation mod-

els into three classes based on adversary’s position. For

adversary, there can be two positions, active or passive. The

passive adversary is just the position that prevents the con-

version of uninfluenced node’s state. On the other hand,

active adversary tries to convert all the naïve nodes into his

state. Yu et al. [20] stated the perfect example of the passive

adversary and referred to it as a blocker. Identification of

key blockers in dynamic OSN was the major issue in their

work. On the other side, the work by Bharathi et al. [18]

could be a nice example of an active adversary. Actually,

most of the papers on IM problem with the adversarial envi-

ronment assume that the adversary group has the active posi-

tion. We also assume that the adversary group wants to

convert naïve nodes’ state to their own state.

Game theory could be one of the solutions for the IM

problem with the competitive environment. While the studies

[18, 21] assume that the active adversary tries to convert

nodes from the naïve state to their own state, Nowak et al.

[22] take it for granted that every node has only two states,

promoter’s state, and adversary’s state, so that there are no

naïve nodes. Our present work is about the evolutionary
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game theory and it could be perceived as a general approach

that describes not only the competition of species in an eco-

system but also IM problem with two adversarial groups. We

have also developed our proposed scheme on two-state node

environment.

To sum up, related works on IM problem with an adver-

sary can be investigated by several views. First of all, many

papers suggest LT model and IC model by considering

adversarial condition. Second, recent approaches to solving

competitive influence diffusion could be divided based on

adversary’s attitude i.e. active or passive. Finally, game the-

ory could be applied to IM problem with adversary if the

node has two states, the promoter’s state or the adversary’s

state.

III. BACKGROUND AND PROBLEM DEFINITION

A. Betweenness Centrality

In a large network, such as in OSN graph, all the nodes are

not treated equally. For example, removal of a bridge node

between the two sub-graphs yields two disjoint graphs, signi-

fying changes in the properties of the graph. However,

removal of a terminal in a graph causes an only little impact

on the structure of the graph. For instance, as can be seen in

Fig. 1, removal of a node n1
5 has no impact on the graph

structure while removing a node v divides the graphs into

two disjoint graphs.

Betweenness centrality (BC) is a measure of the degree to

which vertices lie between other nodes [23]. The BC can

have a significant impact on the network by controlling the

communication of information with others. For communica-

tion between the nodes in different clusters, it is hypothe-

sized that the higher BC node could connect them with each

other.

The BC is formulated to capture the property of connectiv-

ity by representing the ratio of the number of shortest paths

passing through a given node over all the possible ones

between the two nodes to recognize a bridge node. BC is

given in [24], as formulated in (1) as

, (1)

where σ(s,t) is the number of the shortest paths between the

nodes s and t, and σ(s,t|n) is the number of the shortest paths

between the same nodes passing through node n. Nodes n, s,

and t are different nodes and elements of V.

B. Clustering Coefficient

The clustering coefficient (CC) is the probability that a

particular node and neighboring nodes are connected to each

other [25]. It is known that the density of connections

between social network nodes is relatively high compared to

randomly generated network nodes. Higher CC nodes are

more likely to create clusters, which could indicate their

impact on the cluster. CC represents the number of connec-

tions of a node n for which n has the degree, deg(n), and is

essentially the number of edges on the node n. The CC of a

node is given in [26] and is represented as (2).

, (2)

where en is the number of edges between the neighbors of a

node n. As a result, for the global structure analysis, the

average CC can be computed as follows:

. (3)

IV. PROPOSED SCHEME

A. System Model

As discussed in Section 1, we have an OSN that is repre-

sented as a graph, G = <V, E>, where V is the set of users,

and E is the set of edges in G. The graph G has players (pi)

whose goal is to maximize their influence, including within

an adversary’s region. The i is the index of a player and 2 ≤

i ≤ ki (k is the number of players). We assume that the num-

ber of players is bounded by k and each player has its own

region. Let the region for pi be ci. Deterministically,

U
k
i = 1ci = G, as shown in Fig. 2. The pi has complete knowl-

edge of ci, which includes the nodes and edges in ci. How-

ever, pi has no way to know the structure of G\ci. Let pj be

the j-th node in ci. Every edge is a relationship between the

two nodes in G, as represented by eu,v ∈ E where u and v are

any nodes in G. Note that u and v can either belong to the

same region or not. For example, p1 can have complete

knowledge of c1 in terms of the number of nodes that exist

and how many edges are connected among nj
1, where 1 ≤ j  ≤

BC n( )
1

V V 1–( )
-----------------------Σs t V∈,

σ s t n,( )

σ s t,( )
-------------------=

CC n( )
2en

deg n( ) deg n( ) 1–( )
----------------------------------------------=

CCave

1

V
-----Σi

V
CC i( )=

Fig. 1. Node connectivity in a graph.
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k, as seen in Fig. 2. Also, p1 can extract the information con-

cerning which nodes from ci ≠ 1 are connected with c1. How-

ever, p1 does not know how many nodes and how many

edges are configured in ci ≠ 1.

PROBLEM 1. Given an undirected OSN graph G = <V, E>,

and clusters in G, a positive integer k and l, and k sub-graphs,

find a set S of ci such that |S | ≤ l, S ⊆ ci, and Uki = 1ci = G

where ci is a cluster in G.

B. Weak Ties and Local Bridge

In social network theory, the relationships between users

can be defined as strong ties or weak ties [27]. Strong ties

are a strong relationship, such as those with friends, and

weak ties correspond to acquaintances. Triadic closure is a

well-known principle in sociology that states that “if two

people in a social network have a common friend, then there

is an increased likelihood that they will become friends

themselves at some point in the future” [27, 28]. Easley and

Kleinberg [27] described the strong triadic closure using

strong and weak ties such that if a node has two neighbors

with strong ties, the two neighboring nodes get connected

with either a strong or a weak tie. A more generalized strong

triadic closure could be defined such that if nodes n1 and n2
have a common neighbor n3, any neighbor of n3 is also a

neighbor of n1 and n2 [29]. In a graph, we notate the two

types of edges as a bridge and a local bridge. The bridge is

an edge where if the edge is deleted, the graph is split into

two different components. In other words, the local bridge is

an edge whose nodes have no common friend [30]. Further,

it has been proven that all local bridges are weak ties if a

node satisfies the strong triadic closure property [27]. This

condition implies that the weak connections play a valuable

path in reaching another unknown network.

We assume that triadic closure is held in an OSN graph

with strong arguments (selection and social influence) as dis-

cussed previously [2]. Our intuition on this assumption is

that if users are the same, their activities stay within the

same OSN. For example, if a user is a Facebook user, his/her

friends are more likely to be Facebook users and form strong

ties. However, if the user can have friends as acquaintances,

the friends of his/her acquaintances are more likely to be in a

different OSN. We portray an example of local bridges and

weak ties in Fig. 3. Note that the acquaintances possibly

form weak ties in the same OSN. The local bridges including

weak ties may play the role of a conduit in order to maxi-

mize influence over an unknown social region (or cluster),

thus giving a clue to solving the IM-SA problem. We have

described the IM-SA scheme in the following sub-section by

considering a weak tie and a local bridge.

C. Selecting an Influential User Set

Since our goal was to select l seed users without any

knowledge of the adversary’s graph structure, we formu-

lated the seed selection scheme with a modified greedy hill

climbing (GHC) algorithm, as shown in Fig. 4. We call our

scheme as GHC in an adversarial network (GHC-A). To

build GHC-A, we had to first consider the properties of G

with BC.

To facilitate the local bridge and the weak tie, we need to

include the importance of the nodes associated with the local

bridges. We formally define the local bridge as follows:

.

Let LB be the set of nodes associated with local bridges.

In Algorithm 1, GHC selects a node that can maximize the

information cascade (refer to line 3 in Algorithm 1). We con-

eu b,
lb

 e u v,( )= E u ci∈ ∈ v cj∈ u and v G∈  , , ,

i j≠ u,  and v has no 1 hop common neighbor⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 2. A graphical example with three social players.

Fig. 3. An example of local bridges (satisfying strong triadic closure

property as mentioned previously [27] with strong ties (black solid lines) and

weak ties (black dotted lines). The promoter (c1) knows his region c1 but does

not know about the number of nodes are in the adversary region (c2) and how

the nodes in c2 are configured.
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sider the impact of the local bridge with a weighting func-

tion so that GHC-A can maximize the spread of influence,

including the promoter’s as well as the adversary’s region.

We introduce the weighting function on  as follows.

Let us define three metrics to build GHC-A such that

• Nj
f : The number of activated nodes after running f, using

the seed set (S), and including a node nj
i, where ci is the

region of the promoter.

• Nj
S : The number of activated nodes belonging to LB after

running f using a new seed set (S) including a node nj
i,

where ci is the region of the promoter.

• SCOREj
f : The normalized score of a node nj

i such that

. (4)

• SCOREj
lb: The strength of LB, which is the aggregate of

BC and CC if nj
i∈LB and nj

i∈ci, where ci is the region of

the promoter. The mathematical form is defined as 

SCOREj
lb = ∑Nj

S

k = 1
(BC(nk

i) + CC(nk
i)) (5)

• SCOREj
tot: The total score considering the IM in pro-

moter’s region and LB.

. (6)

The modified algorithm (i.e., GHC-A) using (4)–(6) is

depicted in Fig. 5. Note that the Γ is the key weighing factor

in GHC-A model. By controlling the Γ, we monitor the

impact of a seed node between promoter’s region and adver-

sary’s region beyond the LBs. With the increase in the Γ,

more priority is given to SCOREj
lb. Otherwise, SCOREj

f gets

more priority than SCOREj
lb. Therefore, to investigate the

impact of BC and CC, we can use (6) by controlling the Γ.

We analyze the Γ by varying the size of Γ as mentioned in

Section IV.

D. Optimality of Proposed Algorithm

In this subsection, we provide the optimality of our algo-

rithm which can guarantee a factor of 1-1/e of the optimal

solution, where e is the base of the natural logarithm. After

obtaining mathematical proof of GHC and GHC-A, we pro-

vide optimal lower bound of our algorithm. Since the basic

structure of GHC and GHC-A is same except for the three

additional computational steps for computing Nj
f, Nj

S,

SCOREj
f, SCOREj

lb, SCOREj
tot (please refer lines # 4,5,6 in

Fig. 5), we have proven the optimality of Algorithm 1 (GHC).

Let f (·) be the function such that find a number of acti-

vated nodes with given input set. 

We call f( · ) in ‘monotonic’ if and only if S ⊆ T → f (S) ≤

f (T). Also, we define ‘sub-modularity’ if and only if for all S

⊆ T, f (S ∪{v}) − f (S) ≥ f (T ∪{v}) − f (T), where v is a node

of graph G.

Finding optimal k set with a number of nodes to maximize

influence is the same as a set covering problem (SCP) find-

ing k sets completely cover universe set U, which is known

as NP-Hard. Let OPT be the optimal set. GHC is monotone

and sub-modularity with the Algorithm 1 line #3 in Fig. 4.

Let T = {w1, w2, ..., wk} be the optimal solution of size k,

S = {n1, n2, ..., uk} be the solution obtained by GHC,

Si = {n1, n2, ..., ui} be the solution obtained by GHC with i

nodes,

Si+1 = Si ∪{ui+1} be the solution obtained by GHC adding ui+1

eu v,
lb

SCOREj
f

Nj
f

max Nk
j k S Unj

i∈{ }( )
--------------------------------------------------=

SCOREj
tot Γ

Γ Nj
f+

-------------- SCOREj
f×

Nj
S

Γ Nj
f+

--------------+ SCOREj
lb×=

Fig. 4. GHC algorithm with two given inputs (l, f), where l is the cardinality of

the seed set and f is the function of an information cascading model.

Fig. 5. GHC-A exploiting local bridges with node characteristics (BC and

CC).
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into Si,

δi+1 = f(Si+1) − f(Si) be the marginal gain at the i-th itera-

tion.

f (Si+1) = f(Si) + δi+1. (7)

Since f(T) − f (Si ) ≤ f(T ∪Si) − f (Si)

,

. (8)

By using (8), we rewrite (7) as follows

,

. (9)

The final form of optimality by induction using (9) is as

follows

. (10)

Since the basic algorithm structures are the same between

GHC and GHC-A, the optimality of GHC-A is trivial. Also,

our algorithm is near-optimal and guarantees the minimum

63% of the optimal solution.

V. EVALUATION

A. Simulation

We simulate our GHC-A scheme using Eq. (6), which

reflects the influence level of a promoter’s cluster as well as

adversary’s influence on LBs. We first generate two clusters

in a graph in this paper. We argue that two clusters are

enough to validate our algorithm (GHC-A) since if the effec-

tiveness of IM is valid between clusters, GHC-A is scalable

on a more complex graph including more than three clusters.

We leave the extensive simulation with a more complex

graph structure as our future work. We choose the IC model

to simulate the IM-SA. Note that the LT model can also be

applicable to our scheme. We generate 150 nodes for each of

the two clusters (promoter and adversary clusters). We set

the ratio of LB between the two clusters as 0.2. To verify the

impact of Γ, we vary the value of Γ from 1 to 17. 

In our simulation, we were able to monitor two aspects of

OSN structure. First, we could identify the number of acti-

vated nodes by GHC and GHC-A. If the number of activated

nodes using GHC-A is larger than that of GHC, we conclude

that GHC-A is more effective with respect to IM problem.

Second, we can check the impact of Γ by monitoring the

number of activated nodes when we use GHC-A. 

To make our simulation more statistically reliable, the sim-

ulations were repeated 20 times for each Γ setting, and the

outcomes were averaged. The results are represented in Fig. 6.

B. Analysis

As shown in Fig. 6, the dotted-blue line shows the result of

the existing cascade algorithm (GHC); the solid-orange line

shows the cascading result using GHC-A. The x-axis is the

varying value of Γ. Except for the range of Γ as described

previously [11, 13], our scheme showed better performance

than GHC. We note that the GHC-A achieve two factors of

GHC in terms of the activated nodes and the threshold value.

Theoretic guarantee of GHC and GHC-A (the minimum num-

ber of activated nodes) is the same as shown in IV-C. How-

ever, if we use additional information reflecting network

structure (BC and CC), the result of the performance can be

increased (refer to Fig. 6.) Namely, we found that there exists

the sub-optimal threshold of Γ around 10. If the system

designer knows the OSN structure, he may deploy the differ-

ent strategies by facilitating the Γ in order to increase the per-

formance of IM-SA. The finding optimal Γ is not trivial. We

choose the IC model to simulate the IM-SA performance. We

consider the analytic study on Γ as one of our future work.

However, it was noted that our scheme works better than the

traditional IM approach by controlling Γ.

The time complexity and running time of GHC-A can be

derived from Fig. 5. From line #3, the algorithm iterates l

times. And the inner loop of the computation of Nj
f, Nj

f and

SCOREj
f is constant c. The computing time of SCOREj

lb and

SCOREj
tot is Nj

S
× c. In line #7, (SCOREj

tot)

requires the number of the cardinality of ci(i. e., |ci|). If we

 Σnj G nj∧∈ S ∉ f Si nj{ }∪( )≤ f Si( )– k≤ δi 1+
⋅

δi 1+

f T( ) f Si( )–

k
-------------------------≥

f Si 1+
( ) f Si( )≥

1

k
--- f T( ) f Si( )–( )+

f Si 1+
( ) 1

1

k
---–⎝ ⎠

⎛ ⎞ f Si( )≥
1

k
---f T( )+

f S( ) f Sk( ) 1 1
1

k
---–⎝ ⎠

⎛ ⎞
k

–⎝ ⎠
⎛ ⎞ f T( )≥=

 1
1

e
---–⎝ ⎠

⎛ ⎞ f T( ) 0.63 OPT⋅≈ ≈

maxarg nj
i ci∈

Fig. 6. The number of activated nodes in the adversary cluster as a function

of the increasing number of Γ.
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consider |ci| as [|V |/2] in G by taking average nodes of two

clusters, we can count the number of iterations as follows.

Let [|V |/2] be Λ.

1st iteration of for loop: , (11)

2nd iteration of for loop: , (12)

:

(Λ − 1)-th iteration of for loop: , (13)

Λ-th iteration of for loop: . (14)

If we sum up all the iterations of the for loop, the compu-

tation time is 

. (15)

Note that the denominator of [|V |/2] can vary. However,

the upper bound of rthe unning time is still valid in our case.

The total computational time is

. (16)

Therefore, the time complexity and running time is O(l

×[V]2). If we take small size of seed users, the running time

is reduced to O(|V |2).

VI. CONCLUSION

The influence maximization problem has been studied

under a number of domains to describe the effects of the

“word of mouth” for the promotion of new products. In real-

ity, however, more than two social groups exist in the same

market sector. In this paper, we first introduce the Influential

Maximization (IM) problem for Adversarial social players,

the IM-SA. Through a performance evaluation based on

mathematical analysis, we demonstrate that the proposed

scheme can provide the sub-optimal solution for a given player.
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