Acknowledgement
Supported by : National Institute of General Medical Science
References
- Ahn, E., Lee, T., Gu, M., Park, M., Min, S.H. and Kim, B.-S. (2017), "Layer-by-layer assembly for graphene-based multilayer nanocomposites: the field manual", Chem. Mater., 29, 69-79. https://doi.org/10.1021/acs.chemmater.6b02688
- Al-Sherbini, E.-S.A.M. (2010), "UV-visible light reshaping of gold nanorods", Mater. Chem. Phys., 121, 349-353. https://doi.org/10.1016/j.matchemphys.2010.01.048
- Bae, H.S., Seo, E., Jang, S., Park, K.H. and Kim, B.-S. (2011), "Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes", J. Mater. Chem., 21, 15431-15436. https://doi.org/10.1039/c1jm12477c
- Bhaskar, R., Joshi, H., Sharma, A.K. and Singh, A.K. (2017), "Reusable catalyst for transfer hydrogenation of aldehydes and ketones designed by anchoring palladium as nanoparticles on graphene oxide functionalized with selenated amine", ACS Appl. Mater. Interf., 9, 2223-2231. https://doi.org/10.1021/acsami.6b10457
- Bhimanapati, G.R. et al. (2015), "Recent advances in two-dimensional materials beyond graphene", ACS Nano, 9, 11509-11539. https://doi.org/10.1021/acsnano.5b05556
- Chen, Z., Liu, S., Yang, M.-Q. and Xu, Y.-J. (2013), "Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water", ACS Appl. Mater. Interf., 5, 4309-4319.
- Chen, Y., Tan, C., Zhang, H. and Wang, L. (2015), "Two-dimensional graphene analogues for biomedical applications", Chem. Soc. Rev., 44, 2681-2701. https://doi.org/10.1039/C4CS00300D
- Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. and Gogotsi, Y. (2010), "Monolithic carbide-derived carbon films for micro-supercapacitors", Science, 328, 480-483. https://doi.org/10.1126/science.1184126
- Choi, Y., Bae, H.S., Seo, E., Jang, S., Park, K.H. and Kim, B.-S. (2011), "Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes", J. Mater. Chem., 21, 15431-15436. https://doi.org/10.1039/c1jm12477c
- Compton, O.C. and Nguyen, S.T. (2010), "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6, 711-723. https://doi.org/10.1002/smll.200901934
- Dalfovo, M.C., Lacconi, G.I., Moreno, M., Yappert, M.C., Sumanasekera, G.U., Salvarezza, R.C. and Ibanez, F.J. (2014), "Synergy between graphene and Au nanoparticles (heterojunction) towards quenching, improving Raman signal, and UV light sensing", ACS Appl. Mater. Interf., 6, 6384-6391. https://doi.org/10.1021/am405753t
- Dembereldorj, U., Choi, S.Y., Ganbold, E.-O., Song, N.W., Kim, D., Choo, J., Lee, S.Y., Kim, S. and Joo, S.-W. (2014), "Gold nanorod-assembled PEGylated graphene-oxide nanocomposites for photothermal cancer therapy", Photochem. Photobiol. Sci., 90, 659-666. https://doi.org/10.1111/php.12212
- Diyarbakir, S., Can, H. and Metin, O. (2015), "Reduced graphene 0xide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions", ACS Appl. Mater. Interf., 7, 3199-3206.
- Du, Y., Su, J., Luo, W. and Cheng, G. (2015), "Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature", ACS Appl. Mater. Interf., 7, 1031-1034. https://doi.org/10.1021/am5068436
- Ferrari, A.C., et al. (2015), "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, 7, 4598-4810. https://doi.org/10.1039/C4NR01600A
- Gavia, D.J., Do, Y., Gu, J. and Shon, Y.-S. (2014), "Mechanistic insights into the formation of dodecanethiolate-stabilized magnetic iridium nanoparticles: thiosulfate vs thiol ligands", J. Phys. Chem. C, 118, 14548-14554. https://doi.org/10.1021/jp504239x
- Ghosh, A., Pradeep, T. and Chakrabarti, J. (2014), "Coalescence of atomically precise clusters on graphenic surfaces", J. Phys. Chem. C, 118, 13959-13964. https://doi.org/10.1021/jp503001s
- Goksu, H., Ho, S.F., Metin, O., Korkmz, K., Garcia, A.M., Gultekin, M.S. and Sun, S. (2014), "Tandem dehydrogenation of ammonia borane and hydrogenation of nitro/nitrile compounds catalyzed by graphene-supported NiPd alloy nanoparticles", ACS Catal., 4, 1777-1782. https://doi.org/10.1021/cs500167k
- Gordel, M., Olesiak-Banska, J., Matczyszyn, K., Nogues, C., Buckle, M. and Samoc, M. (2014), "Post-synthesis reshaping of gold nanorods using a femtosecond laser", Phys. Chem. Chem. Phys., 16, 71-78. https://doi.org/10.1039/C3CP53457J
- Granatier, J., Lazar, P., Prucek, R., Safarova, K., Zboril, R., Otyepka, M. and Hobza, P. (2012), "Interaction of graphene and arenes with noble metals", J. Phys. Chem. C, 116, 14151-14162.
-
Gupta, S. and Subramanian, V. (2014), "Encapsulating
$Bi_2Ti_2O_7$ (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO", ACS Appl. Mater. Interf., 6, 18597-18608. https://doi.org/10.1021/am503396r - Horiguchi, Y., Honda, K., Kato, Y., Nakashima, N. and Niidome, Y. (2008), "Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces", Langmuir, 24, 12026-12031. https://doi.org/10.1021/la800811j
- Hrbek, J., Hoffmann, F.M., Park, J.B., Liu, P., Stacchiola, D., Hoo, Y.S., Ma, S., Nambu, A., Rodriguez, J.A. and White, M.G. (2008), "Adsorbate-driven morphological changes of a gold surface at low temperature", J. Am. Chem. Soc., 130, 17272-17273. https://doi.org/10.1021/ja8081268
- Hu, C., Rong, J., Cui, J., Yang, Y., Yang, L., Wang, Y. and Liu, Y. (2013), "Fabrication of a graphene oxide-gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering", Carbon, 51, 255-264. https://doi.org/10.1016/j.carbon.2012.08.051
- Huang, J., Zhang. L., Chen, B., Ji, N., Chen, F., Zhang, Y. and Zhang, Z. (2010), "Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis", Nanoscale, 2, 2733-2738.
- Huang, Y.-X., Xie, J.-F., Zhang, X., Xiong, L. and Yu, H.-Q. (2014), "Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities", ACS Appl. Mater. Interf., 6, 15795-15801. https://doi.org/10.1021/am504664r
- Isaacs, S.R., Choo, H., Ko, W.-B. and Shon, Y.-S. (2006), "Chemical, thermal, and ultrasonic stability of hybrid nanoparticles and nanoparticle multilayer films", Chem. Mater., 18, 107-114. https://doi.org/10.1021/cm0518980
- Ismaili, H., Geng, D., Sun, A.X., Kantzas, T.T. and Workentin, M.S. (2011), "Light-activated covalent formation of gold nanoparticle-graphene and gold nanoparticle-glass composites", Langmuir, 27, 13261-13268.
- Liu, M., Zhang, R. and Chen, W. (2014), "Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications", Chem. Rev., 114, 5117-5160.
- Mao, S., Lu, G., Yu, K., Bo, Z. and Chen, J. (2010), "Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates", Adv. Mater., 22, 3521-3526. https://doi.org/10.1002/adma.201000520
- Mondal, A. and Jana, N.R. (2014), "Surfactant-free, stable noble metal-graphene nanocomposite as high performance electrocatalyst", ACS Catal., 4, 593-599. https://doi.org/10.1021/cs401032p
- Muszynski, R., Seger, B. and Kamat, P.V. (2008), "Decorating graphene sheets with gold nanoparticles", J. Phys. Chem. C., 112, 5263-5266. https://doi.org/10.1021/jp800977b
- Nguyen, T.H.D., Zhang, Z., Mustapha, A., Li, H. and Lin, M. (2014), "Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy", J. Agric. Food Chem., 62, 10445-10451.
- Pan, H., Low, S., Weerasuriya, N. and Shon, Y.-S. (2015), "Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles", ACS Appl. Mater. Interf., 7, 3406-3413. https://doi.org/10.1021/am508801e
- Robertson, A.W., Ford, C., He, K., Kirkland, A.I., Watt, A.A.R. and Warner, J.H. (2014), "PbTe nanocrystal arrays on graphene and the structural influence of capping ligands", Chem. Mater., 26, 1567-1575. https://doi.org/10.1021/cm403373q
- Salam, N., Sinha, A., Roy, A.S., Mondal, P., Jana, N.R. and Islam, S.M. (2014), "Synthesis of silver-graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water", RSC Adv., 4, 10001-10012. https://doi.org/10.1039/c3ra47466f
- Shon, Y.-S. (2004), "Metal nanoparticles protected with monolayers: synthetic methods", Dekker Encyclopedia of Nanoscience and Nanotechnology; (Schwarz J.A. Ed.), Marcel Dekker, New York, NY, USA, pp. 1-11.
- Shon, Y.-S., Aquino, M., Pham, T.V., Rave, D., Ramirez, M., Lin, K., Vaccarello, P., Lopez, G., Gredig, T. and Kwon, C. (2011), "Stability and morphology of gold nanoisland arrays generated from layer-by-layer assembled nanoparticle multilayer films: effects of heating temperature and particle size", J. Phys. Chem. C, 115, 10597-10605. https://doi.org/10.1021/jp110531x
-
Sugden, M.W., Richardson, T.H. and Leggett, G. (2010), "Sub-10
${\Omega}$ resistance gold films prepared by removal of ligands from thiol-stabilized 6 nm gold nanoparticles", Langmuir, 26, 4331-4338. - Tan, C., Huang, X. and Zhang, H. (2013), "Synthesis and applications of graphene-based noble metal nanostructures", Mater. Today, 16, 29-36.
- Tao, Y., Dandapat, A., Chen, L., Huang, Y., Sasson, Y., Lin, Z., Zhang, J., Guo, L. and Chen, T. (2016), "Pd-on-Au supra-nanostructures decorated graphene oxide: an advanced electrocatalyst for fuel cell application", Langmuir, 32, 8557-8564.
- Xiang, Q. and Yu, J. (2013), "Graphene-based photocatalysts for hydrogen generation", J. Phys. Chem. Lett., 4, 753-759. https://doi.org/10.1021/jz302048d
- Xu, C., Yang, D., Mei, L., Lu, B., Chen, L., Li, Q., Zhu, H. and Wang, T. (2013), "Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector", ACS Appl. Mater. Interf., 5, 2715-2724. https://doi.org/10.1021/am400212j
- Yao, H., Jin, L., Sue, H-J., Sumi, Y. and Nishimura, R. (2013), "Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach", J. Mater. Chem. A, 1, 10783-10789. https://doi.org/10.1039/c3ta11901g
- Yin, P.T., Shah, S., Chhowalla, M. and Lee, K.-B. (2015), "Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications", Chem. Rev., 115, 2483-2531. https://doi.org/10.1021/cr500537t
- Zedan, A.F., Moussa, S., Terner, J., Atkinson, G. and El-Shall, M.S. (2013), "Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions", ACS Nano, 7, 627-636. https://doi.org/10.1021/nn304775h
- Zhang, N., Yan, X., Huang, Y., Li, J., Ma, J. and Ng, D.H.L. (2017), "Electrostatically assembled magnetite nanoparticles/graphene foam as a binder-free anode for lithium ion battery", Langmuir, 33, 8899-8905.
- Zhao, P., Li, N. and Astruc, D. (2013), "State of the art in nanoparticle synthesis", Coord. Chem. Rev., 257, 638-665. https://doi.org/10.1016/j.ccr.2012.09.002
-
Zhao, J., Yang, B., Zheng, Z., Yang, J., Yang, Z., Zhang, P., Ren, W. and Yan, X. (2014), "Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of
$Fe_3O_4$ nanoparticles and its application for lithium-ion battery", ACS Appl. Mater. Interf., 6, 9890-9896. https://doi.org/10.1021/am502574j - Zhou, J., Chen, M., Xie, J. and Diao, G. (2013), "Synergistically enhanced electrochemical response of host-guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles", ACS Appl. Mater. Interf., 5, 11218-11224. https://doi.org/10.1021/am403463p
- Zhu, C., Guo, S., Zhai, Y. and Dong, S. (2009), "Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker", Langmuir, 26(10), 7614-7618. https://doi.org/10.1021/la904201j
- Zhuo, Q., Ma, Y., Gao, J., Zhang, P., Xia, Y., Tian, Y., Sun, X., Zhong, J. and Sun, X. (2013), "Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature", Inorg. Chem., 52, 3141-3147. https://doi.org/10.1021/ic302608g
Cited by
- Covalent anchoring of atomically precise glutathione-protected gold nanoclusters on graphene oxide nanosheets vol.1, pp.3, 2020, https://doi.org/10.1088/2632-959x/abbe31
- An insight into the binding behavior of graphene oxide and noble metal nanoparticles vol.129, pp.12, 2021, https://doi.org/10.1063/5.0041894