DOI QR코드

DOI QR Code

Efficient Modulation for the Last Symbol in OFDM Systems

OFDM 시스템의 마지막 심볼을 위한 효율적인 변조 방식

  • Yu, Heejung (Department of Information and Communication Engineering, Yeungnam University)
  • Received : 2017.11.05
  • Accepted : 2017.11.23
  • Published : 2018.03.28

Abstract

OFDM modulation has been used for a transmission scheme in 4G LTE (Long Term Evolution) and Wi-Fi systems to mitigate the effects of frequency selective fading channels. An OFDM modulation is a block transmission scheme because an OFDM symbol consists of multiple subcarriers with narrow bandwidth. Therefore, all OFDM symbols in a frame should be filled out with data and padding bits. Depending on the amount of data, more padding bits than information bits can occupy the last OFDM symbol. Such inefficiency causes the loss of throughput. To overcome this problem, an efficiency padding method is proposed by using the property of DFT (Discrete Fourier Transform). In the proposed method, symbol duration of the last symbol is changed depending on the number used data subcarriers in the last symbol. With numerical evaluation, it is examined that throughput enhancement achieved by the proposed method can be about 20% depending a transmission scheme and data length.

OFDM (Orthogonal Frequency Division Multiplexing) 전송방식은 4G LTE (Long Term Evoluation)와 Wi-Fi와 같은 무선 통신 시스템에서 주파수 선택적 페이딩 환경을 극복할 수 있는 변조 방식으로 활용되고 있다. OFDM 심벌은 여러 개의 협대역 부반송파들로 이루어져 있어, OFDM 방식은 블록 단위 전송방식이라 할 수 있다. 즉, 마지막 OFDM 심벌까지 모두 채워서 프레임을 구성해야 한다. 따라서, 전송하고자 하는 정보량에 따라서 마지막 OFDM 심볼이 정보 비트들보다 OFDM 심볼을 채우기 위한 패딩 비트로 채워지는 경우가 있다. 이는 전송하고자 하는 데이터 양이 적은 경우에 심각한 스루풋 저하를 초래한다. 따라서 이와 같은 비효율성을 해결하기 위하여, DFT(Discrete Fourier Transform)의 성질을 이용한 효율적 패딩 기법을 제안하였다. 제안 방식에서는 마지막 OFDM 심볼에서 사용되는 데이터 부반송파의 개수에 따라서 OFDM 심볼의 길이를 조절한다. 그리고, 제안된 방식에 따른 성능 향상이 전송 방식 및 데이터 길이에 따라서 20%까지 될 수 있음을 수치적으로 확인하였다.

Keywords

References

  1. S. G. Kang, "A mathematical implementation of OFDM system with orthogonal basis matrix," Journal of the Korea Institute of Information and Communication Engineering, vol. 13, no. 12, pp. 2731-2736, Dec. 2009.
  2. T. Adame, A. Bel, B. Bellalta, J. Barcelo and M. Oliver, "IEEE 802.11AH: the WiFi approach for M2M communications," IEEE Wireless Communications, vol. 21, no. 6, pp. 144-152, Dec. 2014. https://doi.org/10.1109/MWC.2014.7000982
  3. S. Verma, G. S. Tomar, "Call admission control and handoff techniques for 3-G and beyond mobile networks," Asia-Pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 1, no.1, pp.29-40, Jun. 2011.
  4. IEEE 802.11ax/D2.0, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Enhancements for High Efficiency WLAN, IEEE, Piscataway, N.J., 2017.
  5. IEEE Std 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: High-speed Physical Layer in the 5 GHz Band (Amendment 1), IEEE, Piscataway, N.J., 1999.
  6. IEEE Std 802.11n, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput, IEEE, 2009.
  7. IEEE Std 802.11ac, Wireless LAN Medium Access ControlMAC) and Physical Layer (PHY) Specifications Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, IEEE, Piscataway, N.J., 2013.
  8. H. Yu, D. Lee, S. Moon, Y. Noh, and M. Cheong, "Inefficiency of 256-FFT per 20MHz," IEEE 802.11 Technical contribution 11/15/0572r1, 2015.
  9. K. Waqas and H. Yu, "An efficient padding method in the last symbol for OFDM systems," in Proceedings of the Korean Institute of Communications and Information Science Summer Conference, Jeju, Korea, pp. 392-393, 2017.