DOI QR코드

DOI QR Code

Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions

  • Mohanan, Padmanaban (Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University) ;
  • Subramaniyam, Sathiyamoorthy (Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University) ;
  • Mathiyalagan, Ramya (Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University) ;
  • Yang, Deok-Chun (Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University)
  • Received : 2016.08.09
  • Accepted : 2017.01.16
  • Published : 2018.04.15

Abstract

Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-$\text\tiny{D}$-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.

Keywords

References

  1. Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33:717-35. https://doi.org/10.1016/j.biotechadv.2015.03.001
  2. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  3. Lan TH, Xu ZW, Wang Z, Wu YL, Wu WK, Tan HM. Ginsenoside Rb1 prevents homocysteine-induced endothelial dysfunction via PI3K/Akt activation and PKC inhibition. Biochem Pharmacol 2011;82:148-55.
  4. Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull 2016;125:30-43. https://doi.org/10.1016/j.brainresbull.2016.04.002
  5. Koh EJ, Kim KJ, Choi J, Jeon HJ, Seo MJ, Lee BY. Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat dietinduced obese zebrafish. J Ginseng Res 2017;41:23-30. https://doi.org/10.1016/j.jgr.2015.12.005
  6. Zhao BS, Liu Y, Gao XY, Zhai HQ, Guo JY, Wang XY. Effects of ginsenoside Rg1 on the expression of toll-like receptor 3, 4 and their signaling transduction factors in the NG108-15 murine neuroglial cell line. Molecules 2014;19:16925-36. https://doi.org/10.3390/molecules191016925
  7. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol-and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016.
  8. Xu FY, Shang WQ, Yu JJ, Sun Q, Li MQ, Sun JS. The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am J Transl Res 2016;8:1708-18.
  9. Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structureeactivity relationships, and molecular mechanisms of action. Front Pharmacol 2012;3:1-18.
  10. Choi JS, Chun KS, Kundu J, Kundu JK. Biochemical basis of cancer chemoprevenion and or chemotherapy with ginsenosides. Int J Mol Med 2013;32:1227-38. https://doi.org/10.3892/ijmm.2013.1519
  11. Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015;39:299-303.
  12. Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015;100:208-20. https://doi.org/10.1016/j.fitote.2014.11.019
  13. Jin X, Che DB, Zhang ZH, Yan HM, Jia ZY, Jia XB. Ginseng consumption and risk of cancer: a meta-analysis. J Ginseng Res 2015;40:269-77.
  14. WHO fact sheet. Cardiovascular diseases (CVDs) [Internet]. 2016 September [cited 2016 Dec 29]. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/.
  15. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012;10:4-18. https://doi.org/10.2174/157016112798829760
  16. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013;2013:152786.
  17. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicol Appl Pharmacol 2010;246:171-83. https://doi.org/10.1016/j.taap.2010.05.008
  18. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015;14:6. https://doi.org/10.1186/1475-2891-14-6
  19. Xu Z, Lan T, Wu W, Wu Y. The effects of ginsenoside Rb1 on endothelial damage and ghrelin expression induced by hyperhomocysteine. J Vasc Surg 2011;53:156-64. https://doi.org/10.1016/j.jvs.2010.06.170
  20. Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y, Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007;353:764-9.
  21. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010;31:158-75. https://doi.org/10.1097/BCR.0b013e3181c7ed82
  22. Kwok HH, Guo GL, Lau JK, Cheng YK, Wang JR, Jiang ZH, Keung MH, Mak NK, Yue PY, Wong RN. Stereoisomers ginsenosides-20(S)-Rg(3) and -20(R)-Rg(3) differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. Biochem Pharmacol 2012;83:893-902. https://doi.org/10.1016/j.bcp.2011.12.039
  23. Chan LS, Yue PY, Mak NK, Wong RN. Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009;38:370-7. https://doi.org/10.1016/j.ejps.2009.08.008
  24. Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C, Wang P, Zou MH, Wang DW. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 2015;230:1964-73.
  25. Kim JH. Cardiovascular aiseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16-26. https://doi.org/10.5142/jgr.2012.36.1.16
  26. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol 2006;7:589-600. https://doi.org/10.1038/nrm1983
  27. Jiang QS, Hunag XN, Dai ZK, Yang GZ, Zhou QX, Shi JS, Wu Q. Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. J Ethnopharmacol 2007;111:567-72.
  28. Zhang YJ, Zhang XL, Li MH, Iqbal J, Bourantas CV, Li JJ, Su XY, Muramatsu T, Tian NL, Chen SL. The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis. J Cardiovasc Pharmacol 2013;62:50-7. https://doi.org/10.1097/FJC.0b013e31828f8d45
  29. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  30. Wang Y, Hu Z, Sun B, Xu J, Jiang J, Luo M. Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B-cell lymphoma/B-cell lymphoma-associated X protein pathway. Mol Med 2015;11:4518-24.
  31. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011;38:4327-35. https://doi.org/10.1007/s11033-010-0558-4
  32. Sun Y, Liu Y, Chen K. Roles and mechanisms of ginsenoside on cardiovascular diseases: progress and perspectives. Sci China Life 2016;59:292-8.
  33. Huang J, Li LS, Yang DL, Gong QH, Deng J, Huang XN. Inhibitory effect of ginsenoside Rg1 on vascular smooth muscle cell proliferation induced by PDGF-BB is involved in nitric oxide formation. Evid Based Complement Alternat Med 2012;2012:314395.
  34. Guo Y, Yang T, Lu J, Li S, Wan L, Long D, Li Q, Feng L, Li Y. Rb1 postconditioning attenuates liver warm ischemiaereperfusion injury through ROSeNOeHIF pathway. Life Sci 2011;88:598-605. https://doi.org/10.1016/j.lfs.2011.01.022
  35. Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional andmechanistic overview. Nat Prod Rep 2015;32:256-72. https://doi.org/10.1039/C4NP00080C
  36. Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 2008;14:33-6. https://doi.org/10.1007/s11655-007-9002-6
  37. Wang L, Li X, Song YM, Wang B, Zhang FR, Yang R, Wang HQ, Zhang GJ. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to $\gamma$-radiation by targeting the nuclear factor-${\kappa}B$ pathway. Mol Med Rep 2015;12:609-14. https://doi.org/10.3892/mmr.2015.3397
  38. Shan X, Fu YS, Aziz F, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS One 2014;9:e115401. https://doi.org/10.1371/journal.pone.0115401
  39. Lo YT, Tsai YH, Wu SJ, Chen JR, Chao JC. Ginsenoside Rb1 inhibits cell activation and liver fibrosis in rat hepatic stellate cells. J Med Food 2011;14:1135-43. https://doi.org/10.1089/jmf.2010.1485
  40. Jiang JW, Chen XM, Chen XH, Zheng SS. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol 2011;17:3605-13. https://doi.org/10.3748/wjg.v17.i31.3605
  41. Zhang C, Liu L, Yu Y, Chen B, Tang C, Li X. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol Med Rep 2012;5:1295-8.
  42. Zhang F, Li M, Wu X, Hu Y, Cao Y, Wang X, Xiang S, Li H, Jiang L, Tan Z, et al. 20(S)-Ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Des Devel Ther 2015;9:3969-87.
  43. Wu K, Li N, Sun H, Xu T, Jin F, Nie J. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity. Biochem Biophys Res Commun 2015;466:369-75. https://doi.org/10.1016/j.bbrc.2015.09.030
  44. Lee CK, Park KK, Chung AS, Chung WY. Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem Toxicol 2012;50:2565-74. https://doi.org/10.1016/j.fct.2012.01.005
  45. Wang JH, Nao JF, Zhang M, He P. 20(S)-Ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol 2014;35:11985-94. https://doi.org/10.1007/s13277-014-2497-5
  46. Junmin S, Hongxiang L, Zhen L, Chao Y, Chaojie W. Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity. J Tradit Chin Med 2015;35:440-4. https://doi.org/10.1016/S0254-6272(15)30122-9
  47. He BC, Gao JL, Luo X, Luo J, Shen J, Wang L, Zhou Q, Wang YT, Luu HH, Haydon RC, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling. Int J Oncol 2011;38:437-45.
  48. Leung KW, Cheung LW, Pon YL, Wong RN, Mak NK, Fan TP, Au SC, Tombran-Tink J, Wong AS. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol 2007;152:207-15. https://doi.org/10.1038/sj.bjp.0707359
  49. Yu M, Yu X, Guo D, Yu B, Li L, Liao Q, Xing R. Ginsenoside Rg1 attenuates invasion and migration by inhibiting transforming growth factor-b1-induced epithelial to mesenchymal transition in HepG2 cells. Mol Med Rep 2015;11:3167-73. https://doi.org/10.3892/mmr.2014.3098
  50. Steward W, Brown K. Cancer chemoprevention: a rapidly evolving field. Br J Cancer 2013;109:1-7. https://doi.org/10.1038/bjc.2013.280
  51. Stejskalova L, Pavek P. The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharm Biotechnol 2011;12:715-30. https://doi.org/10.2174/138920111795470994
  52. Wang Y, Ye X, Ma Z, Liang Q, Lu B, Tan H, Xiao C, Zhang B, Gao Y. Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells. Eur J Pharmacol 2008;601:73-8. https://doi.org/10.1016/j.ejphar.2008.10.057
  53. Li Y, Xiao Z, Li B, Liu K, Wang H, Qi J, Wang Y. Ginsenoside exhibits concentration-dependent dual effects on HepG2 cell proliferation via regulation of c-Myc and HNF-$4{\alpha}$. Eur J Pharmacol 2016;792:26-32. https://doi.org/10.1016/j.ejphar.2016.10.017
  54. WHO. Global report on diabetes. Geneva: WHO; 2016.
  55. Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;36:27-39. https://doi.org/10.5142/jgr.2012.36.1.27
  56. Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamineinduced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol 2010;242:18-28. https://doi.org/10.1016/j.taap.2009.09.009
  57. Shen L, Haas M, Wang DQ, May A, Lo CC, Obici S, Tso P, Woods SC, Liu M. Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiol Rep 2015;3:e12453.
  58. Xiong Y, Shen L, Liu KJ, Tso P, Xiong Y, Wang G, Woods SC, Liu M. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 2010;59:2505-12. https://doi.org/10.2337/db10-0315
  59. Kong HL, Wang JP, Li ZQ, Zhao SM, Dong J, Zhang WW. Anti-hypoxic effect of ginsenoside Rb1 on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin 2009;30:396-403.
  60. Chen W, Wang J, Luo Y, Wang T, Li X, Li A, Li J, Liu K, Liu B. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J Ginseng Res 2016;40:351-8. https://doi.org/10.1016/j.jgr.2015.11.002
  61. Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytother Res 2012;26:1017-22. https://doi.org/10.1002/ptr.3686
  62. Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-8. https://doi.org/10.1248/bpb.33.325
  63. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-9.
  64. Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40:406-13. https://doi.org/10.4093/dmj.2016.40.5.406
  65. Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768-73. https://doi.org/10.1002/ptr.3322
  66. Kim KS, Jung Yang H, Lee IS, Kim KH, Park J, Jeong HS, Kim Y, Ahn KS, Na YC, Jang HJ. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 2015;5:18325.
  67. Park MW, Ha J, Chung SH. 20(S)-Ginsenoside Rg3 enhances glucosestimulated insulin secretion and activates AMPK. Biol Pharm Bull 2008;31: 748-51. https://doi.org/10.1248/bpb.31.748
  68. Kim DY, Yuan HD, Huang B, Quan HY, Chung SH. Ginsenoside 20(R)-Rg3 stimulates glucose uptake in C2C12 myotubes via CaMKK-AMPK pathways. Food Sci Biotechnol 2010;19:1277-82. https://doi.org/10.1007/s10068-010-0182-z
  69. Yu H, Zhen J, Yang Y, Gu J, Wu S, Liu Q. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med 2016;20:623-31. https://doi.org/10.1111/jcmm.12739
  70. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res 2007;1136:190-9. https://doi.org/10.1016/j.brainres.2006.12.047
  71. Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, Roller M, Stough C. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl) 2010;212:345-56. https://doi.org/10.1007/s00213-010-1964-y
  72. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7:65-74. https://doi.org/10.2174/157015909787602823
  73. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 2012;846:1-12.
  74. Zheng F, Wang H. NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons. Neurochem Int 2009;54:385-92. https://doi.org/10.1016/j.neuint.2009.01.006
  75. Liang W, Ge S, Yang L, Yang M, Ye Z, Yan M, Du J, Luo Z. Ginsenosides Rb1 and Rg1 promote proliferation and expression of neurotrophic factors in primary Schwann cell cultures. Brain Res 2010;1357:19-25. https://doi.org/10.1016/j.brainres.2010.07.091
  76. Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, Chen XC. Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis 2010;19:977-89. https://doi.org/10.3233/JAD-2010-1296
  77. Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012;166:1872-87. https://doi.org/10.1111/j.1476-5381.2012.01902.x
  78. Ardah MT, Paleologou KE, Lv G, Menon SA, Abul Khair SB, Lu JH, Safieh-Garabedian B, Al-Hayani AA, Eliezer D, Li M, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis 2015;74:89-101.
  79. O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 2011;34:185-204. https://doi.org/10.1146/annurev-neuro-061010-113613
  80. Chen X, Huang T, Zhang J, Song J, Chen L, Zhu Y. Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rb1's attenuation of beta-amyloid peptide25-35-induced tau hyperphosphorylation in cortical neurons. Brain Res 2008;1200:99-106.
  81. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 2012;1820:453-60. https://doi.org/10.1016/j.bbagen.2011.12.005
  82. Araki W. Post-translational regulation of the ${\beta}$-secretase BACE1. Brain Res Bull 2016;126:170-7. https://doi.org/10.1016/j.brainresbull.2016.04.009
  83. Choi RJ, Roy A, Jung HJ, Ali MY, Min BS, Park CH, Yokozawa T, Fan TP, Choi JS, Jung HA. BACE1 molecular docking and anti-Alzheimer's disease activities of ginsenosides. J Ethnopharmacol 2016;190:219-30. https://doi.org/10.1016/j.jep.2016.06.013
  84. Chen LM, Lin ZY, Zhu YG, Lin N, Zhang J, Pan XD, Chen XC. Ginsenoside Rg1 attenuates beta-amyloid generation via suppressing PPARgamma-regulated BACE1 activity in N2a-APP695 cells. Eur J Pharmacol 2012;675:15-21. https://doi.org/10.1016/j.ejphar.2011.11.039
  85. Wu J, Pan Z, Cheng M, Shen Y, Yu H, Wang Q, Lou Y. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GRdependent signaling pathway. Neurochem Int 2013;62:92-102. https://doi.org/10.1016/j.neuint.2012.09.016
  86. Liu J, He J, Huang L, Dou L, Wu S, Yuan Q. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen Res 2014;9:943-50. https://doi.org/10.4103/1673-5374.133137
  87. Hao K, Gong P, Sun SQ, Hao HP, Wang GJ, Dai Y, Liang Y, Xie L, Li FY. Beneficial estrogen-like effects of ginsenoside Rb1, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice. Eur J Pharmacol 2011;659:15-25. https://doi.org/10.1016/j.ejphar.2011.03.005
  88. Lau WS, Chan RY, Guo DA, Wong MS. Ginsenoside Rg1 exerts estrogen-like activities via ligand-independent activation of ERalpha pathway. J Steroid Biochem Mol Biol 2008;108:64-71. https://doi.org/10.1016/j.jsbmb.2007.06.005
  89. Shohami E, Biegon A. Novel approach to the role of NMDA receptors in traumatic brain injury. CNS Neurol Disord Drug Targets 2014;13:567-73. https://doi.org/10.2174/18715273113126660196
  90. Zhang YF, Fan XJ, Li X, Peng LL, Wang GH, Ke KF, Jiang ZL. Ginsenoside Rg1 protects neurons from hypoxic-ischemic injury possibly by inhibiting $Ca^{2+}$ influx through NMDA receptors and L-type voltage-dependent $Ca^{2+}$ channels. Eur J Pharmacol 2008;586:90-9. https://doi.org/10.1016/j.ejphar.2007.12.037
  91. Shen L, Zhang J. NMDA receptor and iNOS are involved in the effects of ginsenoside Rg1 on hippocampal neurogenesis in ischemic gerbils. Neurol Res 2007;29:270-3. https://doi.org/10.1179/016164107X159144
  92. Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice. J Gerontol A Biol Sci Med Sci 2014;69:282-94.
  93. Escobar CM, Krajewski SJ, Sandoval-Guzman T, Voytko ML, Rance NE. Neuropeptide Y gene expression is increased in the hypothalamus of older women. J Clin Endocrinol Metab 2004;89:2338-43. https://doi.org/10.1210/jc.2003-031899
  94. Gumbs MC, van den Heuvel JK, la Fleur SE. The effect of obesogenic diets on brain Neuropeptide Y. Physiol Behav 2016;162:161-73. https://doi.org/10.1016/j.physbeh.2016.04.049
  95. Lin N, Cai DL, Jin D, Chen Y, Shi JJ. Ginseng panaxoside Rb1 reduces body weight in diet-induced obese mice. Cell Biochem Biophys 2014;68:189-94. https://doi.org/10.1007/s12013-013-9688-3
  96. Ye J, Yao JP, Wang X, Zheng M, Li P, He C, Wan JB, Yao X, Su H. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016;13:3083-91.
  97. Ni N, Liu Q, Ren H, Wu D, Luo C, Li P, Wan JB, Su H. Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 2014;19: 3012-24. https://doi.org/10.3390/molecules19033012
  98. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011;13:184-90.
  99. Liu D, Zhang H, Gu W, Liu Y, Zhang M. Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3betamediated CHOP induction. Mol Med Rep 2014;9:1434-8. https://doi.org/10.3892/mmr.2014.1958
  100. Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 2013;8:e79399. https://doi.org/10.1371/journal.pone.0079399

Cited by

  1. Ginseng nanoparticles: a budding tool for cancer treatment vol.12, pp.10, 2018, https://doi.org/10.2217/nnm-2017-0070
  2. Plant Extracts and Phytochemicals Targeting α -Synuclein Aggregation in Parkinson's Disease Models vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.01555
  3. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics vol.12, pp.3, 2018, https://doi.org/10.5582/bst.2018.01144
  4. Inhibitory Effect of 20(S)-Ginsenoside Rg3 on Human Platelet Aggregation and Intracellular Ca 2+ Levels via Cyclic Adenosine Monophosphate Dependent Manner vol.23, pp.4, 2018, https://doi.org/10.3746/pnf.2018.23.4.317
  5. Ginsenoside Rb1, A Major Saponin from Panax ginseng , Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice vol.47, pp.8, 2018, https://doi.org/10.1142/s0192415x19500927
  6. Hetero-Tricyclic Lead Scaffold as Novel PDE5A Inhibitor for Antihypertensive Activity: In Silico Docking Studies vol.15, pp.4, 2019, https://doi.org/10.2174/1573409915666190214161221
  7. Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol vol.20, pp.1, 2019, https://doi.org/10.3390/ijms20010094
  8. Ginsenoside Rb1 Blocks Ritonavir-Induced Oxidative Stress and eNOS Downregulation through Activation of Estrogen Receptor-Beta and Upregulation of SOD in Human Endothelial Cells vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020294
  9. The Role of Herbal Bioactive Components in Mitochondria Function and Cancer Therapy vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/3868354
  10. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.00294
  11. Gypenoside LXXV Promotes Cutaneous Wound Healing In Vivo by Enhancing Connective Tissue Growth Factor Levels Via the Glucocorticoid Receptor Pathway vol.24, pp.8, 2018, https://doi.org/10.3390/molecules24081595
  12. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties vol.11, pp.5, 2018, https://doi.org/10.3390/nu11051041
  13. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway vol.10, pp.5, 2019, https://doi.org/10.1039/c9fo00095j
  14. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway vol.10, pp.5, 2019, https://doi.org/10.1039/c9fo00095j
  15. Arginyl-fructosyl-glucose, a Major Maillard Reaction Product of Red Ginseng, Attenuates Cisplatin-Induced Acute Kidney Injury by Regulating Nuclear Factor κB and Phosphatidylinositol 3-Kinase/Pr vol.67, pp.20, 2018, https://doi.org/10.1021/acs.jafc.9b00540
  16. Chemical Structures and Pharmacological Profiles of Ginseng Saponins vol.24, pp.13, 2018, https://doi.org/10.3390/molecules24132443
  17. Interspecies hybrids of Panax ginseng Meyer new line 0837 and Panax quinquefolius generated superior F1 hybrids with greater biomass and ginsenoside contents vol.60, pp.4, 2018, https://doi.org/10.1007/s13580-019-00154-4
  18. Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation vol.24, pp.23, 2019, https://doi.org/10.3390/molecules24234367
  19. Ginseng Gintonin Enhances Hyaluronic Acid and Collagen Release from Human Dermal Fibroblasts Through Lysophosphatidic Acid Receptor Interaction vol.24, pp.24, 2018, https://doi.org/10.3390/molecules24244438
  20. Positive Role of Chinese Herbal Medicine in Cancer Immune Regulation vol.48, pp.7, 2020, https://doi.org/10.1142/s0192415x20500780
  21. A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3 vol.10, pp.1, 2018, https://doi.org/10.3390/biom10010122
  22. Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/6423783
  23. Strontium Modified Calcium Sulfate Hemihydrate Scaffold Incorporating Ginsenoside Rg1/Gelatin Microspheres for Bone Regeneration vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00888
  24. Antidiabetic Effects of Arginyl-Fructosyl-Glucose, a Nonsaponin Fraction from Ginseng Processing in Streptozotocin-Induced Type 2 Diabetic Mice through Regulating the PI3K/AKT/GSK-3 β and Bcl-2/ vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/3707904
  25. Ginsenoside Rg1 as an Effective Regulator of Mesenchymal Stem Cells vol.10, pp.None, 2020, https://doi.org/10.3389/fphar.2019.01565
  26. Till 2018: a survey of biomolecular sequences in genus Panax vol.44, pp.1, 2018, https://doi.org/10.1016/j.jgr.2019.06.004
  27. Targeting α-Synuclein for PD Therapeutics: A Pursuit on All Fronts vol.10, pp.3, 2018, https://doi.org/10.3390/biom10030391
  28. Effects of an Adaptogenic Extract on Electrical Activity of the Brain in Elderly Subjects with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled, Two-Armed Cross-Over Study vol.13, pp.3, 2018, https://doi.org/10.3390/ph13030045
  29. Biotechnological Interventions for Ginsenosides Production vol.10, pp.4, 2020, https://doi.org/10.3390/biom10040538
  30. Panax quinquefolium L. Ginsenosides from Hairy Root Cultures and Their Clones Exert Cytotoxic, Genotoxic and Pro-Apoptotic Activity towards Human Colon Adenocarcinoma Cell Line Caco-2 vol.25, pp.9, 2018, https://doi.org/10.3390/molecules25092262
  31. Ginsenoside Rg3 suppresses the growth of gemcitabine‐resistant pancreatic cancer cells by upregulating lncRNA‐CASC2 and activating PTEN signaling vol.34, pp.6, 2018, https://doi.org/10.1002/jbt.22480
  32. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2018, https://doi.org/10.3390/molecules25112635
  33. Taxane‐induced neurotoxicity: Pathophysiology and therapeutic perspectives vol.177, pp.14, 2018, https://doi.org/10.1111/bph.15086
  34. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions vol.44, pp.4, 2018, https://doi.org/10.1016/j.jgr.2020.03.001
  35. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  36. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  37. Effect of Korean Red Ginseng on Cholesterol Metabolites in Postmenopausal Women with Hypercholesterolemia: A Pilot Randomized Controlled Trial vol.12, pp.11, 2018, https://doi.org/10.3390/nu12113423
  38. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2018, https://doi.org/10.1002/med.21743
  39. The Effect of Shenyi Capsule on Non-Small-Cell Lung Cancer Combined with Chemotherapy from the Yin-Yang Perspective vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/1653750
  40. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  41. A Synergistic Anti-Diabetic Effect by Ginsenosides Rb1 and Rg3 through Adipogenic and Insulin Signaling Pathways in 3T3-L1 Cells vol.11, pp.4, 2021, https://doi.org/10.3390/app11041725
  42. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA‐130b‐5p/TLR4/NF‐κB axis vol.236, pp.3, 2018, https://doi.org/10.1002/jcp.30001
  43. Roles of plant‐derived bioactive compounds and related microRNAs in cancer therapy vol.35, pp.3, 2018, https://doi.org/10.1002/ptr.6883
  44. Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products vol.11, pp.3, 2018, https://doi.org/10.3390/biom11030467
  45. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach vol.13, pp.6, 2018, https://doi.org/10.3390/cancers13061274
  46. Ginsenoside Rg3 Attenuates Early Hepatic Injury via Inhibiting PPARγ- and Ang II-Related Inflammation and Fibrosis in Type II Diabetic Mice vol.16, pp.4, 2018, https://doi.org/10.1177/1934578x211009691
  47. Bifunctional Self‐Powered Drug Delivery System to Promote the Release and Transdermal Delivery of Polar Molecules vol.6, pp.14, 2018, https://doi.org/10.1002/slct.202100835
  48. Neuroprotective Effect and Antioxidant Potency of Fermented Cultured Wild Ginseng Root Extracts of Panax ginseng C.A. Meyer in Mice vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26103001
  49. Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4 vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.09.001
  50. Genome-Wide Differential Methylation Profiles from Two Terpene-Rich Medicinal Plant Extracts Administered in Osteoarthritis Rats vol.10, pp.6, 2021, https://doi.org/10.3390/plants10061132
  51. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections vol.26, pp.13, 2018, https://doi.org/10.3390/molecules26134095
  52. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide vol.45, pp.4, 2018, https://doi.org/10.1016/j.jgr.2020.09.005
  53. Bioactive strontium ions/ginsenoside Rg1-incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration vol.12, pp.None, 2018, https://doi.org/10.1016/j.mtbio.2021.100141
  54. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics vol.14, pp.10, 2018, https://doi.org/10.3390/ph14101010
  55. Korean red ginseng alleviate depressive disorder by improving astrocyte gap junction function vol.281, pp.None, 2021, https://doi.org/10.1016/j.jep.2021.114466
  56. Determination of ginsenoside Rh3 in rat plasma by LC–MS/MS and its application to a pharmacokinetic study vol.36, pp.2, 2018, https://doi.org/10.1002/bmc.5268