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Abstract
Copulas are a tool for constructing multivariate distributions and formalizing the dependence structure be-

tween random variables. From copula literature review, there are a few asymmetric copulas available so far while
data collected from the real world often exhibit asymmetric nature. This necessitates developing asymmetric
copulas. In this study, we discuss a method to construct a new class of bivariate asymmetric copulas based on
products of symmetric (sometimes asymmetric) copulas with powered arguments in order to determine if the
proposed construction can offer an added value for modeling asymmetric bivariate data. With these newly con-
structed copulas, we investigate dependence properties and measure of association between random variables.
In addition, the test of symmetry of data and the estimation of hyper-parameters by the maximum likelihood
method are discussed. With two real example such as car rental data and economic indicators data, we perform
the goodness-of-fit test of our proposed asymmetric copulas. For these data, some of the proposed models turned
out to be successful whereas the existing copulas were mostly unsuccessful. The method of presented here can
be useful in fields such as finance, climate and social science.

Keywords: Cramér-von Mises statistics, empirical copula, Fourier copula, maximum pseudo-
likelihood estimation, parametric bootstrap, pseudo-observations

1. Introduction

Copulas offer a useful tool in modeling the dependence among random variables. For example, Bus-
ababodhin and Amphanthong (2016) applied copula in the multivariate statistical process control
and Kim (2014) used copula-GARCH for the modeling of dependence structure of Korea financial
markets. In the literature, most of the existing copulas, however, are symmetric while data collected
from the real world may exhibit asymmetric nature. This necessitates developing asymmetric copulas.
Many researchers proposed some methods to construct asymmetric copulas; Rodrı́guez-Lallena and
Úbeda-Flores (2004) introduced a class of bivariate copulas that generalizes some known families.
Kim et al. (2011) and Mesiar and Najjari (2014) extended the method of Rodrı́guez-Lallena and
Úbeda-Flores (2004) to construct new families of symmetric and asymmetric copulas. Alfonsi and
Brigo (2005) described a new construction method for asymmetric copulas based on periodic func-
tions. Liebscher (2008) introduced two methods to construct asymmetric multivariate copulas, which
is close to what Khoudraji (1995) proposed earlier (Quessy and Kortbi, 2016). The first is connected
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with products of copulas while the second one is a generalization of the Archimedean copulas fam-
ily (Di Bernardino and Rullière, 2015). Durante (2009) suggested a method to construct asymmetric
copulas based on products of copulas with powered arguments. Wu (2014) proposed a new method of
constructing asymmetric copulas using a mixture of basic copulas and a convex combination of asym-
metric copulas that can exhibit different tail dependence along different directions. Di Bernardino and
Rullière (2015) constructed multivariate family of copulas by generalizing some known families by
using a distortion matrix Σ.

In this study, we discuss a method to construct a new class of bivariate asymmetric copulas based
on products of symmetric (sometimes asymmetric) copulas with powered arguments. Then we would
like to determine if the proposed construction can offer an added value for modeling asymmetric data.
This construction is based on the result of Durante (2009). Our proposal is actually an extension
of Durante (2009) for a wide range of copulas which includes some newly constructed copulas in
addition to all copula families available in the current literature. With these newly constructed cop-
ulas, we investigate dependence properties and measure of association between random variables.
We consider the result of Mukherjee et al. (2015) in which they obtained meaningful results of the
two non-parametric measures of association between two random variables, Spearman’s rho (ρ) and
Kendall’s tau (τ), with the asymmetric copula family. In addition, to test the symmetry of data for
using bivariate copulas, we use Cramér-von Mises criterion suggested by Genest et al. (2012). More-
over, the estimation of hyper-parameters by the maximum likelihood method are discussed.

This paper is organized as follows. Section 2 contains some basic concepts of copulas and the
dependence structure by calculating Spearman’s rho and Kendall’s tau using asymmetric copulas. In
Section 3, we introduce Fourier copula and new class of bivariate asymmetric copulas. Goodness-
of-fit of the proposed asymmetric copulas is introduced in Section 4. Test of symmetry for bivariate
case and the maximum likelihood estimation of hyper-parameters for the constructed copulas are
discussed in Sections 5 and 6, respectively. Section 7 shows the illustrative data analysis for the
proposed asymmetric copula models with two real data. Finally, the discussion and conclusion are
presented in Section 8.

2. Definition and preliminary

In this section we recall some definitions and results that are necessary to understand a (bivariate)
copula. A copula is a multivariate distribution function defined on In, where I := [0, 1], with uniformly
distributed marginals. In this paper, we focus on bivariate copulas.

Definition 1. A bivariate copula is a function C : I2 → I, which satisfies the following properties:

(P1) C(0, v) = C(u, 0) = 0, ∀ u, v ∈ I

(P2) C(1, u) = C(u, 1) = u, ∀ u ∈ I

(P3) C is 2-increasing, i.e., ∀ u1, u2, v1, v2 ∈ I with u1 ≤ u2, v1 ≤ v2,

C(u2, v2) +C(u1, v1) −C(u1, v2) −C(u2, v1) ≥ 0.

The importance of copulas has been growing because of their applications in several fields of
research. Their relevance primarily comes from Sklar’s Theorem (Sklar, 1959): If X and Y are two
continuous random variables with joint distribution function H and marginal distribution functions
F and G, respectively, then there exists a unique copula C such that H(x, y) = C(F(x),G(y)) for all
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(x, y) ∈ R2 and conversely, given a copula C and two univariate distribution functions F and G, the
function H defined above is a joint distribution function with margins F and G. Sklar’s Theorem
clarifies the role that copulas play in the relationship between multivariate distribution functions and
their univariate margins. A proof of this theorem can be found in Schweizer and Sklar (1983).

Definition 2. Suppose X and Y are two random variables with marginal distribution functions F and
G, respectively. Then Spearman’s rho is the ordinary (Pearson) correlation coefficient of the trans-
formed random variables F(X) and G(Y), while Kendall’s tau is the difference between the probability
of concordance Pr[(X1−X2)(Y1−Y2) > 0] and the probability of discordance Pr[(X1−X2)(Y1−Y2) < 0]
for two independent pairs (X1,Y1) and (X2,Y2) of observations drawn from the distribution.

In terms of dependence properties, Spearman’s rho is a measure of average quadrant dependence,
while Kendall’s tau is a measure of average likelihood ratio dependence (see Nelsen (2006) for
details). If X and Y are two continuous random variables with copula C, then Spearman’s rho and
Kendall’s tau of X and Y are given by,

ρ = 12
"

I2
C(u, v) du dv − 3, (2.1)

τ = 4
"

I2
C(u, v) dC(u, v) − 1. (2.2)

Definition 3. A copula C is called absolutely continuous if, when considered as a joint distribution
function, C(u, v) has a joint density function given by c(u, v) := ∂2C/(∂u∂v) and in that case dC(u, v) =
∂2C/(∂u∂v) du dv.

Denoting c(u, v)−1 as h(u, v), the following theorem gives a characterization of absolutely continuous
copulas (De la Peña et al., 2006).

Theorem 1. A function C : I2 → I is an absolutely bivariate copula only if there exists a function
h : I2 → I, satisfying the following conditions,

1. Integrability:
!

I2 |h(x, y)| dx dy < ∞,

2. Degeneracy:
∫
I h(x, ξ)dξ =

∫
I h(ξ, y)dξ = 0 ∀x, y ∈ I,

3. Positive Definiteness: h(x, y) ≥ −1 ∀(x, y) ∈ I2,

and such that C(u, v) =
∫ v

0

∫ u
0 1 + h(x, y) dx dy.

A copula C is called symmetric if C(u, v) = C(v, u) for all u, v ∈ I, otherwise asymmetric. Let us
denote the independent copula as Π(u, v) := uv. In addition, the new asymmetric copulas satisfying
all the hypothesis of Theorem 1 were proposed in Mukherjee et al. (2015):

Cε
max(u, v) = Π(u, v)

+
1
4

(√
1 + 4ε2 −

√
(1 − 2u)2 + 4ε2

) (√
1 + 4ε2 −

√
(1 − 2v)2 + 4ε2

)
,

Cε
min(u, v) = Π(u, v)

− 1
4

(√
1 + 4ε2 −

√
(1 − 2u)2 + 4ε2

) (√
1 + 4ε2 −

√
(1 − 2v)2 + 4ε2

)
.
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Then corresponding Spearman’s rho and Kendall’s tau are given by, respectively,

ρεmax =
3
4

(√
1 + 4ε2 − 4ε2 coth−1

(√
1 + 4ε2

))2
,

ρεmin = −
3
4

(√
1 + 4ε2 − 4ε2 coth−1

(√
1 + 4ε2

))2
,

τεmax =
1
2

1 + 4ε2 + 4ε2
(√

1 + 4ε2 − 2ε2 coth−1
(√

1 + 4ε2
))

ln

1 + 2ε2 −
√

1 + 4ε2

2ε2

 ,
τεmin = −

1
2

1 + 4ε2 + 4ε2
(√

1 + 4ε2 − 2ε2 coth−1
(√

1 + 4ε2
))

ln

1 + 2ε2 −
√

1 + 4ε2

2ε2

 .
The optimal values of ρ and corresponding τ are obtained by letting ε → 0. Mukherjee et al. (2015)
showed how the values of ρ approach the optimal values as ε→ 0 and it is clear that −0.75 ≤ ρ ≤ 0.75
and −0.5 ≤ τ ≤ 0.5.

3. Construction of asymmetric copulas

In this section we will first define Fourier copulas (Lowin, 2010) and then construct asymmetric (in
general) copulas using the following theorem (see Durante (2009) for details).

Theorem 2. For all α, β ∈ (0, 1), and for all copulas A and B, the function Cα,β : I2 → I, defined by

Cα,β(u, v) = A
(
uα, vβ

)
B

(
uᾱ, vβ̄

)
is a copula, where ᾱ = 1 − α and β̄ = 1 − β.

3.1. Fourier copula

It is natural to write the function h in Theorem 1 as a Fourier series as follows

h(x, y) =
∑

m,n∈Z0

γn
m exp (2πi(nx + my)) , ∀(x, y) ∈ I2,

where Z0 = Z \ {0} and
∑

m,n∈Z0 |γn
m| < ∞ with γn

−m = γ
−n
m , ∀ n,m ∈ Z0. The latter condition guarantees

that h is real valued. Then the integrability and degeneracy of h are clear. For positive definiteness,
suppose γn

m are chosen so that h(u, v) ≥ −1 for all u, v ∈ I, then the copula generated by h, defined by

CF(u, v) = Π(u, v) +
∫ v

t=0

∫ u

s=0
h(s, t) ds dt

= Π(u, v) +
∫ v

t=0

∫ u

s=0

∑
m,n∈Z0

γn
m exp (2πi(nx + my)) ds dt

= Π(u, v) − 1
4π2

∑
m,n∈Z0

γn
m

mn

(
e2πinu − 1

) (
e2πimv − 1

)
is called a Fourier copula, which was apparently introduced by Ibragimov (2009). It is sufficient that
if ∑

n,m∈N

∣∣∣γn
m

∣∣∣ + ∣∣∣γ−n
m

∣∣∣ ≤ 1
2
, (3.1)
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then h is positive definite and will generate a Fourier copula CF as mentioned above. Using (2.1) and
(2.2), Spearman’s rho and Kendall’s tau of a Fourier copula CF are given by ρ = −(3/π2)

∑
m,n∈Z0 (γn

m/
mn) and τ = −(1/π2)

∑
m,n∈Z0 {(2γn

m + |γn
m|2)/mn}. The last equality follows from the assumption that

γn
−m = γ

−n
m , ∀ n,m ∈ Z0. One can show that

− 6
π2

∑
m,n∈N

(∣∣∣γn
m

∣∣∣ + ∣∣∣γ−n
m

∣∣∣) ≤ ρ ≤ 6
π2

∑
m,n∈N

(∣∣∣γn
m

∣∣∣ + ∣∣∣γ−n
m

∣∣∣) ,
− 2
π2

∑
m,n∈N

(
2
∣∣∣γn

m

∣∣∣ + 3
∣∣∣γ−n

m

∣∣∣) < τ < 2
π2

∑
m,n∈N

(
3
∣∣∣γn

m

∣∣∣ + 2
∣∣∣γ−n

m

∣∣∣)
and hence using (3.1) we have, |ρ| ≤ 3/π2 ≈ 0.304 and |τ| < 3/π2 ≈ 0.304. Even though Fourier
copulas are in general asymmetric in nature, the above results show its applications are quite limited.
In the following subsection we will construct asymmetric copulas by utilizing the existing copulas
including Fourier with mind of convenient application.

3.2. New class of bivariate asymmetric copulas

In this subsection we use Theorem 2 to construct a class of asymmetric copulas and will find corre-
sponding Spearman’s rho and Kendall’s tau for these new copulas to have a qualitative idea of which
asymmetric copula has a better range of ρ and τ values. In Durante (2009), the author mentions that
Theorem 2 will generate an asymmetric copula for all α, β ∈ (0, 1) with α , 1/2 or β , 1/2. But if
the copulas A and B in Theorem 2 are symmetric then we have,

Cα,β(v, u) = A
(
vα, uβ

)
B

(
vᾱ, uβ̄

)
= A

(
uβ, vα

)
B

(
uβ̄, vᾱ

)
= Cβ,α(u, v).

Therefore we would like to mention here that Cα,β in Theorem 2 can be symmetric if α = β and hence
in our case we will choose α , β. The following lemma will give an interesting symmetric behavior
of ρ and τ.

Lemma 1. If A and B are two symmetric copulas and α, β ∈ (0, 1), then

ρ
(
Cα,β

)
= ρ

(
Cβ,α

)
and τ

(
Cα,β

)
= τ

(
Cβ,α

)
,

where ρ(Cα,β), τ(Cα,β) are Spearman’s rho, Kendall’s tau of Cα,β, respectively, and

Cα,β(u, v) = A
(
uα, vβ

)
B

(
uᾱ, vβ̄

)
.

Proof: The symmetry of ρ follows from the fact that Cα,β(v, u) = Cβ,α(u, v). To show that τ(Cα,β) =
τ(Cβ,α), first recall that

τ(C) = 1 − 4
"

I2

∂C
∂u

∂C
∂v

du dv

is equivalent to (2.2). Secondly notice that

∂

∂u
Cα,β(u, v) =

∂

∂u
A

(
uα, vβ

)
B

(
uᾱ, vβ̄

)
= A

(
uα, vβ

) ∂

∂u
B

(
uᾱ, vβ̄

)
+ B

(
uᾱ, vβ̄

) ∂

∂u
A

(
uα, vβ

)
= A

(
vβ, uα

) ∂
∂v

B
(
vβ̄, uᾱ

)
+ B

(
vβ̄, uᾱ

) ∂
∂v

A
(
vβ, uα

)
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Table 1: Nine basic Copula Functions used in this study to construct bivariate asymmetric copulas

Copula name Copula function
Fourier C1(u, v) := CF (u, v)

Max C2(u, v) := Cε1
max(u, v), ε1 > 0

Min C3(u, v) := Cε2
min(u, v), ε2 > 0

Independent C4(u, v) := Π(u, v) = uv
FGM C5(u, v) := FGM(u, v, θ1) = uv + θ1uv(1 − u)(1 − v), θ1 ∈ (−1, 1]

Clayton C6(u, v) := Clayton(u, v, θ2) =
(
u−θ2 + v−θ2 − 1

)−1/θ2 , θ2 ∈ (0,∞)

Frank C7(u, v) := Frank(u, v, θ3) = − 1
θ3

log
[
1 +

(e−θ3u − 1)(e−θ3v − 1)
e−θ3 − 1

]
, θ3 ∈ R \ {0}

Gumbel C8(u, v) := Gumbel(u, v, θ4) = exp
[
−

(
(− log u)θ4 + (− log v)θ4

)1/θ4
]
, θ4 ≥ 1

AMH C9(u, v) := AMH(u, v, θ5) =
uv

1 − θ5(1 − u)(1 − v)
, θ5 ∈ (−1, 1]

FGM = Farlie-Gumbel-Morgenstern family; AMH = Ali-Mikhail-Haq family.

=
∂

∂v
A

(
vβ, uα

)
B

(
vβ̄, uᾱ

)
=

∂

∂v
Cβ,α(v, u).

Hence we have

τ
(
Cα,β

)
= 1 − 4

"
I2

∂Cα,β

∂u
∂Cα,β

∂v
du dv

= 1 − 4
"

I2

∂Cβ.α

∂v
∂Cβ,α

∂u
du dv

= τ(Cβ,α).

�

For convenience we adopt the following notations, for j = 1, 2, . . . , copulas C j are defined in Table
1. The list of copulas in Table 1 is considered in this study. We define the set of parameters ψ and the
copulas that arise from Theorem 2 as,

ψ :=
{
γn

m, ε1, ε2, θ1, θ2, θ3, θ4, θ5
}

C jkα,β(u, v) := C j
(
uα, vβ

)
Ck

(
uᾱ, vβ̄

)
, for j, k = 1, 2, . . . , 9.

Notice that C jkα,β ≡ Ck jᾱ,β̄.
For ψ = {0.5δn

m(δ1
m+δ

−1
n ), 0.01, 0.01, 1, 20, 30, 20, 1}, where δn

m is the Kronecker delta, we have cal-
culated (Mathematica code and the results of many other different cases can be found at http://goo.gl/
plkJ7). Spearman’s rho and Kendall’s tau of the copulas C jkα,β, for j, k = 1, 2, . . . , 9; j < k with
different α, β values. In general, our results show that ρ, τ values stay away from zero if (α, β) ≈
(0, 0) or/and (1, 1). For instance, we would like to mention ρ, τ values for two copulas C12α,β and
C17α,β (Table 2 and Table 3).

Figures 1 and 2 clearly show that the contour plots of C12α,β and C17α,β are asymmetric. In
this article, the authors just showed the contour plots of two asymmetric copulas, but readers can
download the Mathematica code from the linked website and reproduce the contour plots of the other
remaining asymmetric copulas. So depending on the readers’ provided data, readers can choose one of
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Table 2: ρ, τ values (correct up to 2 decimal places) for C12α,β

α
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2 ρ 0.62
τ 0.41

0.3 ρ 0.56 0.51
τ 0.37 0.34

0.4 ρ 0.49 0.44 0.38
τ 0.32 0.29 0.25

0.5 ρ 0.41 0.36 0.30 0.23
τ 0.27 0.24 0.20 0.15

0.6 ρ 0.33 0.28 0.21 0.15 0.08
τ 0.22 0.18 0.14 0.10 0.05

0.7 ρ 0.24 0.19 0.13 0.07 0.01 −0.05
τ 0.16 0.13 0.09 0.04 0.00 −0.04

0.8 ρ 0.15 0.10 0.05 −0.00 −0.06 −0.11 −0.15
τ 0.10 0.07 0.03 −0.01 −0.05 −0.08 −0.12

0.9 ρ 0.06 0.02 −0.02 −0.07 −0.12 −0.16 −0.20 −0.23
τ 0.04 0.01 −0.02 −0.05 −0.09 −0.12 −0.15 −0.18

Table 3: ρ, τ values (correct up to 2 decimal places) for C17α,β

α
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2 ρ 0.81
τ 0.67

0.3 ρ 0.73 0.68
τ 0.59 0.54

0.4 ρ 0.65 0.60 0.54
τ 0.51 0.47 0.41

0.5 ρ 0.57 0.52 0.46 0.38
τ 0.43 0.39 0.34 0.28

0.6 ρ 0.47 0.42 0.36 0.30 0.23
τ 0.35 0.31 0.26 0.21 0.16

0.7 ρ 0.36 0.32 0.27 0.21 0.15 0.08
τ 0.26 0.23 0.19 0.14 0.09 0.05

0.8 ρ 0.25 0.21 0.16 0.11 0.06 0.00 −0.05
τ 0.17 0.14 0.11 0.07 0.03 −0.01 −0.05

0.9 ρ 0.12 0.09 0.04 0.00 −0.05 −0.09 −0.13 −0.17
τ 0.08 0.06 0.02 −0.01 −0.05 −0.08 −0.11 −0.15

the proposed asymmetric copula by looking at the contour plots of all proposed asymmetric copulas.
Figure 3 is scatter plots of random numbers generated from the nine basic copulas. Figure 4 is scatter
plots of random numbers generated from some of the constructed asymmetric copulas. These figures
may be helpful to choose which copula will be appropriate to fit the given data well.

4. Estimation and goodness-of-fit

4.1. Fitting copulas to data

We assume that we have a random sample X1, . . . ,Xn from a d-dimensional cumulative distribution
function (CDF) F with continuous marginal CDFs F1, . . . , Fd. Hence, F has the unique representa-
tion, F(x1, . . . , xd) = C[F1(x1), . . . , Fd(xd)], by Sklar’s Theorem. Let F̂1, . . . , F̂d denote the rescaled
empirical CDFs computed from the data as that for every j ∈ {1, . . . , d}, F̂ j(x) = {1/(n + 1)}∑n

i=1 1(Xi, j
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Figure 1: Contour plot of C12α,β with α = 0.4, β = 0.1.
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Figure 2: Contour plot of C17α,β with α = 0.1, β = 0.4.

≤ x). The rescaled empirical CDFs differ from the usual empirical CDF by the use of denominator
n + 1 rather than n. This guarantees that the pseudo-observations lie strictly in the interior of [0, 1]d.

The maximum pseudo-likelihood estimate (MPLE) of θ is obtained by maximizing the log pseudo-
likelihood with respect to θ;

log L
(
θ; Û1, . . . , Ûn

)
=

n∑
i=1

log cθ
(
Ûi

)
, (4.1)

where cθ denotes the copula density (Kojadinovic, 2013), and

Ûi =
(
Ûi,1, . . . , Ûi,d

)
=

(
F̂1(Xi,1), . . . , F̂d(Xi,d)

)
(4.2)
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Figure 3: Scatter plots of random numbers generated from the nine basic copulas.
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Figure 4: Scatter plots of random numbers generated from the proposed asymmetric copulas. Only nine copula
cases are shown here as a sample.
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are the pseudo-observations. The estimate is generally found by numerical maximization of (4.1).
For the computation in this paper, we used a R package ‘copula’ developed by Kojadinovic and Yan
(2010) for basic symmetric copulas and our own R program for constructed asymmetry copulas.

4.2. Goodness-of-fit test

A rigorous approach to compare the fit of different copulas to the same data consists of using goodness-
of-fit tests. The issue is whether the unknown copula C actually belongs to the chosen parametric
copula family C0 = {Cθ} or not. Formally, one wants to test H0 : C ∈ C0 vs. H1 : C < C0. A relatively
large number of testing procedures have been proposed in the literature as can be concluded from the
review of Genest et al. (2009). One approach that appears to perform particularly well according to
recent large scale simulations is based on the empirical copula of the data X1, . . . ,Xn, which is defined
by

Cn(u) =
1
n

n∑
i=1

l
(
Ûi < u

)
, u ∈ [0, 1]d, (4.3)

where the random vectors Ûi are the pseudo-observations as in (4.2). The empirical copula Cn is a
consistent estimator of the unknown copula C whether H0 is true or not. Hence, as suggested by
several authors, a natural goodness-of-fit test consists of comparing Cn with an estimation Cθn of C
obtained assuming that C ∈ C0 holds Kojadinovic (2013), where θn is an estimator of θ computed
from the pseudo-observations Û1, . . . , Ûn. Precisely, it was proposed to base a test of goodness-of-fit
on the empirical process

Cn(u) =
√

n
{
Cn(u) −Cθn (u)

}
, u ∈ [0, 1]d. (4.4)

According to the large scale simulations carried out in Genest et al. (2009), the most powerful version
of this procedure is based on the following Cramér-von Mises statistic:

S n =

∫
[0,1]d

Cn(u)2dCn(u) =
n∑

i=1

{
Cn

(
Ûi

)
−Cθn

(
Ûi

)}2
. (4.5)

An approximate p-value for S n can be obtained by means of the parametric bootstrap-based proce-
dure (see Genest et al. (2009) for the details omitted here). This procedure is computationally very
intensive. Thus, as n reaches 300, the extensive Monte Carlo experiments carried for d = 2, 3, 4 in
Kojadinovic et al. (2011) indicate that one can safely use the fast multiplier approach as an alternative.

5. Test of symmetry for bivariate data

This section briefly deals with methods to test the symmetry of bivariate data. For that, it is rea-
sonable to compare values of Ĉn(u, v) and Ĉn(v, u). Base on this idea, for the test the hypothesis of
exchangeability data, Genest et al. (2012) suggested three measures as:

Rn =

∫ 1

0

∫ 1

0

{
Ĉn(u, v) − Ĉn(v, u)

}2
dv du, (5.1)

S ∗n =
∫ 1

0

∫ 1

0

{
Ĉn(u, v) − Ĉn(v, u)

}2
dĈn(v, u), (5.2)

Tn = sup
(u,v)∈[0,1]2

∣∣∣Ĉn(u, v) − Ĉn(v, u)
∣∣∣ . (5.3)
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Figure 5: Scatter plot of car rental data.

See also Bouzebda and Cherfi (2012) and Quessy and Bahraoui (2013) for other test procedures
for the symmetry of copulas. Nelsen (2007) considered another measure of asymmetry. In this study,
we use a Cramér-von Mises statistic S ∗n as a measure to check asymmetry of bivariate data for the
computational convenience. The ‘exchTest’ function of the ‘copula’ package in R program was used
for the calculation of the S ∗n.

6. Estimation of hyper-parameters in constructed asymmetric copula

In the previous section, we estimated the parameters of copulas with the powered hyper-parameters α
and β. In this section, we explain how to estimate simultaneously the parameter in copulas as well as
the hyper-parameters of constructed asymmetric copula.

By the equation (4.1), the log pseudo-likelihood of the constructed copula by copulas C1 and C2
is as:

log L (θ1, θ2, α, β; (û1, v̂1), . . . , (ûn, v̂n)) =
n∑

i=1

log C1

(
uα1 , v

β
1

)
C2

(
uᾱ1 , v

β̄
1

)
, (6.1)

where (ûi, v̂i) is ith pseudo-observation and θ1 and θ2 are the parameters of copulas C1 and C2, re-
spectively. We estimated the parameters θ1, θ2, α, β by maximizing (6.1), simultaneously. For this
optimization computation, we used a quasi-Newton algorithm with numerical differentiation in a ‘L-
BFGS-B’ method in R function ‘optim’.

7. Real data example

7.1. Car rental data

We consider two datasets to illustrate the usefulness of our proposed asymmetric copulas. The first
dataset is car rental data of American new cars and trucks data for sport utility vehicle (SUV) with
four wheel drive which is available at Nayland College. Engine size and retail price variables with
sample size n = 38 are considered for this study. Figure 5 is a scatter plot of two variables, engine
size and retail price. For the symmetry test on this data, we have S ∗n = 0.056 with p-value = 0.004 as
described in Section 5, which means the data is not symmetric.
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Table 4: Result of parameter estimates, values of BIC, AIC, and S n with approximated p-values for nine basic
copulas on the car rental data

Copula name Parameter BIC AIC S n p-value
Frank 7.328 −29.328 −30.966 0.035 0.143
Clayton 1.972 −25.367 −27.005 0.066 0.029
Max 0.113 −20.905 −22.543 0.094 0.007
AMH 1.000 −19.877 −21.515 0.155 0.001
Gumbel 1.959 −18.270 −19.907 0.071 0.042
FGM 1.000 −11.796 −13.433 0.243 0.001
Independent 0.000 0.000 0.505 0.001
Min 45423.710 3.638 2.000 0.505 0.001
Fourier 0.000 3.640 2.003 0.505 0.001

BIC=Bayesian information criterion; AIC=Akaike information criterion; S n =Cramér-von Mises goodness-of-fit statistics.

Table 5: Result of parameter estimates, values of BIC, AIC, and S n with approximated p-values for some
combined asymmetric copulas on the car rental data

Copula name par1 par2 α β BIC AIC S n p-value
Max × Clayton 0.001 7.905 0.448 0.423 −26.315 −32.865 0.055 0.197
Independent × Frank 7.195 0.001 0.001 −22.024 −26.937 0.036 0.276
Clayton × Frank 13.119 7.647 0.334 0.410 −21.499 −28.050 0.031 0.356
Independent × Clayton 4.280 0.186 0.071 −21.144 −26.056 0.049 0.216
Frank × Gumbel 8.691 21.269 0.804 0.948 −20.853 −27.401 0.480 0.351
Fourier × Clayton 0.999 4.950 0.228 0.124 −20.202 −26.752 0.049 0.177
Clayton × Gumbel 3.715 20.611 0.754 0.934 −20.195 −26.745 0.042 0.201
Max × Frank 3.571 7.360 0.001 0.001 −18.397 −24.947 0.035 0.425
Min × Frank 3.578 7.359 0.001 0.001 −18.397 −24.947 0.035 0.336
FGM × Frank 0.020 7.320 0.001 0.001 −18.397 −24.947 0.035 0.311
Fourier × Frank 0.867 7.245 0.001 0.001 −18.393 −24.944 0.036 0.311
Frank × AMH 7.586 0.849 0.999 0.999 −18.371 −24.922 0.033 0.391
Min × Clayton 0.001 4.232 0.200 0.052 −18.197 −24.747 0.054 0.142
Max × Gumbel 0.001 2.742 0.608 0.462 −17.735 −24.286 0.061 0.067
FGM × Clayton −0.999 4.185 0.173 0.058 −17.687 −24.237 0.049 0.187
Clayton × AMH 4.181 −0.999 0.827 0.943 −17.658 −24.208 0.049 0.192
Max × Independent 0.113 0.996 0.999 −13.571 −18.484 0.094 0.017
Independent × AMH 0.999 0.001 0.001 −12.558 −17.471 0.155 0.001
Independent × Gumbel 1.961 0.000 0.000 −10.988 −15.900 0.071 0.047
Fourier ×Max 0.449 0.113 0.001 0.001 −9.945 −16.495 0.094 0.022
Max × FGM 0.113 −0.601 0.991 0.999 −9.880 −16.431 0.095 0.022
Max × AMH 0.113 −0.601 0.991 0.999 −9.880 −16.431 0.095 0.167
Max ×Min 0.113 1.924 0.990 0.999 −9.877 −16.427 0.095 0.017
Gumbel × AMH 5.596 0.999 0.184 0.238 −9.666 −16.216 0.130 0.012
Min × AMH 0.925 1.000 0.001 0.000 −8.938 −15.488 0.155 0.001
Fourier × AMH 0.962 1.000 0.001 0.001 −8.928 −15.478 0.155 0.001
FGM × AMH −0.539 0.999 0.001 0.001 −8.903 −15.454 0.156 0.001
Min × Gumbel 8.174 1.960 0.001 0.001 −7.345 −13.896 0.071 0.027
Fourier × Gumbel 0.900 1.970 0.001 0.001 −7.336 −13.886 0.070 0.042
FGM × Gumbel 0.797 1.970 0.001 0.001 −7.336 −13.886 0.070 0.201
Independent × FGM 0.998 0.001 0.001 −4.495 −9.408 0.244 0.001
Fourier × FGM 0.606 0.999 0.001 0.001 −0.860 −7.410 0.244 0.001
Min × FGM 9.931 1.000 0.000 0.003 −0.850 −7.400 0.244 0.001
Fourier × Independent 0.999 0.182 0.187 9.109 4.196 0.478 0.001
Min × Independent 8.980 0.067 0.001 10.913 6.000 0.505 0.001
Fourier ×Min 0.999 6.595 0.175 0.192 12.833 6.282 0.480 0.001

BIC=Bayesian information criterion; AIC=Akaike information criterion; S n =Cramér-von Mises goodness-of-fit statistics.
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Figure 6: Contour plots of fitted copulas Cθn (solid line) and empirical copulas Cn (dotted line) for the four
constructed asymmetric copulas on the car rental data.

Table 4 shows the result of parameter estimates, values of Bayesian information criterion (BIC),
values of Akaike information criterion (AIC), and Cramér-von Mises goodness-of-fit statistics (S n)
with approximated p-values for nine basic copulas on the car rental data. Only one basic copula
fits well in the sense of 5% level of Cramér-von Mises test: Frank copula. Table 5 shows the result
of analysis for the constructed asymmetric copulas. Here par1(θ1), par2(θ2), α and β are estimated
simultaneously by the MPLE as presented in Subsection 4.1 and Section 6. Fifteen combinations show
p-values greater than 0.05 in Table 5, which means that asymmetric copulas are appropriate model.
Figure 6 is the contour plots of empirical copulas (Cn) and fitted copulas (Cθn ) for four asymmetric
copulas: Clayton × Frank, Fourier × Frank, Fourier × Gumbel, and Fourier × AMH copula.

7.2. Economic indicators data

The second datasets is monthly economic indicators of Korea from Jan. 2011 to Aug. 2013, available
at (Statistics Korea). Certificate of deposit (CD) rate and interest rate variables with sample size
n = 44 are considered for this study. Figure 7 is a scatter plot of two variables, CD rate and interest
rate. For the symmetry test on this data, we have S ∗n = 0.102 with p-value = 0.008 as mentioned in
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Figure 7: Scatter plot of economic indicators data.

Table 6: Result of parameter estimates, values of BIC, AIC, and S n with approximated p-values for nine basic
copulas on the economic indicators data

Copula name par BIC AIC S n p-value
Max 0.096 −26.055 −27.839 0.089 0.017
Gumbel 1.867 −20.218 −22.002 0.062 0.107
Frank 5.048 −19.045 −20.829 0.073 0.032
FGM 1.000 −11.786 −13.570 0.223 0.001
AMH 0.859 −8.993 −10.777 0.208 0.001
Clayton 0.826 −6.796 −8.580 0.197 0.001
Independent 0.000 0.000 0.462 0.001
Min 87109.604 3.784 2.000 0.462 0.001
Fourier 0.000 3.802 2.017 0.462 0.001

BIC=Bayesian information criterion; AIC=Akaike information criterion; S n =Cramér-von Mises goodness-of-fit statistics.

Section 5, which means the data is not symmetric.
Table 6 shows the result of parameter estimates, values of BIC, AIC, and S n with approximated

p-values for nine basic copulas on the car rental data. Only one basic copula fits well in the sense
of 5% level of Cramér-von Mises test: Gumbel copula. Table 7 shows the result of analysis for the
constructed asymmetric copulas. Fifteen combinations show p-values greater than 0.05 in Table 7,
which means that asymmetric copulas are appropriate model. Figure 8 is the contour plots of empirical
copulas (Cn) and fitted copulas (Cθn ) for four asymmetric copulas: Clayton × Frank, Fourier × Frank,
Fourier × Gumbel, and Fourier × AMH copula.

8. Conclusion and discussion

We discussed a new generalized copula family which includes a class of asymmetric copulas as well
as all copula families available in the current literature, including Fourier copula. The construction of
new asymmetric family is based on and an extension of the result by Durante (2009). With diverse
data such as simulated data, car rental data, and economic indicators, we performed parameter esti-
mation by using the maximum pseudo-likelihood estimation method and Cramér-von Mises type of
goodness-of-fit tests for the newly constructed asymmetric copula family. For these data, some of the
proposed models turned out to be successful whereas the existing copulas were mostly unsuccessful.
We thus argue that the proposed construction can offer an added value to model asymmetric bivariate
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Table 7: Result of parameter estimates, values of BIC, AIC, and S n with approximated p-values for some
combined asymmetric copulas on the economic indicators data

Copula name par1 par2 α β BIC AIC S n p-value
Clayton × Gumbel 13.478 5.576 0.605 0.172 −27.187 −34.324 0.044 0.236
Frank × Gumbel 17.132 5.471 0.598 0.166 −26.130 −33.267 0.043 0.221
Independent × Gumbel 5.037 0.500 0.001 −25.799 −31.151 0.064 0.107
Independent × Clayton 13.916 0.483 0.080 −25.585 −30.938 0.072 0.082
Fourier × Clayton 0.999 10.218 0.491 0.088 −23.759 −30.896 0.078 0.057
Clayton × Frank 11.221 18.584 0.446 0.852 −23.380 −30.516 0.052 0.152
Min × Clayton 0.001 13.566 0.474 0.067 −23.172 −30.309 0.078 0.052
Fourier × Gumbel 0.999 4.641 0.543 0.128 −23.139 −30.276 0.089 0.062
Clayton × AMH 13.112 −0.999 0.531 0.947 −22.091 −29.228 0.071 0.072
FGM × Gumbel 0.728 4.705 0.492 0.001 −22.090 −29.227 0.063 0.107
Max × Gumbel 4.443 4.571 0.482 0.001 −22.062 −29.199 0.061 0.201
Min × Gumbel 4.446 4.569 0.481 0.001 −22.062 −29.199 0.061 0.152
FGM × Clayton −0.999 11.810 0.466 0.046 −21.995 −29.132 0.072 0.067
Gumbel × AMH 5.108 0.876 0.499 0.999 −21.979 −29.116 0.064 0.112
Max × Clayton 146.628 13.915 0.483 0.080 −21.801 −28.938 0.072 0.072
Independent × Frank 9.868 0.440 0.001 −18.546 −23.899 0.083 0.037
Max × Independent 0.098 0.999 0.999 −18.457 −23.810 0.090 0.012
FGM × Frank −0.475 10.201 0.441 0.001 −15.205 −22.342 0.081 0.042
Fourier × Frank 0.999 9.462 0.496 0.158 −14.897 −22.034 0.121 0.012
Frank × AMH 9.985 0.053 0.566 0.998 −14.871 −22.008 0.081 0.047
Max × Frank 2.134 9.869 0.446 0.001 −14.749 −21.885 0.085 0.037
Fourier ×Max 0.549 0.095 0.001 0.001 −14.678 −21.815 0.089 0.022
Max × FGM 0.098 −0.316 1.000 0.999 −14.677 −21.814 0.090 0.017
Max × AMH 0.098 −0.316 1.000 0.999 −14.677 −21.814 0.090 0.017
Max ×Min 0.097 1.924 0.999 0.999 −14.675 −21.812 0.089 0.022
Min × Frank 2.135 9.835 0.453 0.001 −14.674 −21.811 0.087 0.032
Independent × FGM 1.000 0.001 0.001 −4.200 −9.553 0.223 0.001
Independent × AMH 0.867 0.005 0.001 −1.393 −6.746 0.207 0.001
FGM × AMH 0.999 −0.849 1.000 0.998 −0.404 −7.540 0.223 0.001
Min × FGM 5.103 0.999 0.001 0.001 −0.399 −7.536 0.223 0.001
Fourier × FGM 0.958 1.000 0.005 0.001 −0.367 −7.504 0.224 0.001
Fourier × AMH 0.990 0.999 0.350 0.275 −0.254 −7.391 0.280 0.001
Min × AMH 1.935 0.870 0.001 0.003 2.403 −4.734 0.206 0.001
Fourier × Independent 1.000 0.324 0.270 6.969 1.617 0.444 0.001
Fourier ×Min 0.999 7.659 0.347 0.256 10.808 3.671 0.446 0.001
Min × Independent 8.980 0.067 0.001 11.353 6.000 0.462 0.001

BIC=Bayesian information criterion; AIC=Akaike information criterion; S n =Cramér-von Mises goodness-of-fit statistics.

data.
For the estimation of the hyper-parameters (α and β), one can consider the cross-validation ap-

proach instead of the maximum likelihood estimation (MLE) as we did in section 6. After getting the
MLE of copula parameters for fixed value of α and β, one can compare the cross validation copula in-
formation criterion (CIC) presented by Jordanger and Tjøstheim (2014). Then choose the parameter
estimates that have the minimum of CIC. One may consider a Bayesian approach or expectation-
maximization algorithm to estimate the hyper-parameters efficiently.

In our future study, we would extend our copula method to a multivariate case, to develop a
generalized composite operator of asymmetric copula family as in Louzada and Ferreira (2016), to
apply to the direction data from Kim and Kim (2014), and to incorporate time varying component as
in Ara et al. (2017) to our proposed method. R program and datasets are available upon request from
the corresponding author.
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Figure 8: Contour plots of fitted copulas Cθn (solid line) and empirical copulas Cn (dotted line) for the four
constructed asymmetric copulas on the economic indicators data.
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Schweizer B and Sklar A (1983). Probabilistic Metric Spaces, Elsevier, New York.
Statistics Korea. Korean Statistical Information Service, from: http://kosis.kr/statHtml/statHtml.do?

orgId=376&tblId=DT 376 100 SDMZ021V 1&vw cd=MT ZTITLE&list id=M2 A0001 A00
01&seqNo=&lang mode=ko&language=kor&obj varid=&itm id=&conn path=E1

Wu S (2014). Construction of asymmetric copulas and its application in two-dimensional reliability
modeling, European Journal of Operational Research, 238, 476–485.

Received November 10, 2017; Revised December 27, 2017; Accepted December 31, 2017




