
34 Hyungil Kang : Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing

International Journal of Contents, Vol.14, No.1, Mar. 2018

Comparison of Distributed and Parallel NGS Data Analysis Methods based on

Cloud Computing

Hyungil Kang

Dept. of Semiconductor Electronics Engineering

Chungbuk Health & Science University, Cheongju, Chungbuk, 28150, Republic of Korea

Sangsoo Kim

Dept. of Course-based Qualification Exam Team2

Human Resources Development Service of Korea, Ulsan, 44538, Republic of Korea

ABSTRACT

With the rapid growth of genomic data, new requirements have emerged that are difficult to handle with big data storage and

analysis techniques. Regardless of the size of an organization performing genomic data analysis, it is becoming increasingly difficult

for an institution to build a computing environment for storing and analyzing genomic data. Recently, cloud computing has emerged

as a computing environment that meets these new requirements. In this paper, we analyze and compare existing distributed and

parallel NGS (Next Generation Sequencing) analysis based on cloud computing environment for future research.

Key words: DNA, Analysis, NGS, Cloud.

1. INTRODUCTION

The DNA sequencing method developed by the British

biochemist Frederick Sanger in 1977 has been widely used for

about 40 years. Sanger sequencing is a technique for analyzing

a single strand of DNA strands in a single tube. This method

has a limited DNA sequencing throughput, which is very costly

and time-consuming to analyze the genome [1].

Next Generation Sequencing (NGS) is a next-generation

DNA sequencing method that solves the technical bottleneck of

sanger sequencing. NGS was first commercialized in 2006 and

has since revolutionized genome research. Fig. 1 shows the cost

of genome analysis from 2001 to 2017. In this figure, the graph

from 2001 to mid-2007 is the cost of genome analysis using

sanger sequencing. The graphs since mid-2007 show the cost of

genome analysis using NGS. As shown in the figure, NGS has

greatly reduced the cost of genome analysis every year.

* Corresponding author, Email: khi69@chsu.ac.kr

Manuscript received Jan. 03, 2018; revised Apr. 02, 2018;

accepted Apr. 02, 2018

Fig. 1. Cost of DNA analysis

NGS analysis techniques with high throughput have

evolved rapidly and are changing the scope of genome research

and development of new drugs [3], [4]. With the development

of NGS technology, the cost of DNA sequencing has

drastically decreased. As a result, NGS analysis has spread to

various fields, and genome data has increased exponentially.

With the rapid growth of genomic data, new requirements

have emerged that are difficult to handle with big data storage

and analysis techniques. Regardless of the size of an

organization performing genomic data analysis, it is becoming

increasingly difficult for an institution to build a computing

environment for storing and analyzing genomic data.

Recently, cloud computing has emerged as a computing

environment that meets these new requirements [5]. In a cloud

https://doi.org/10.5392/IJoC.2018.14.1.034

 Hyungil Kang : Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing 35

International Journal of Contents, Vol.14, No.1, Mar. 2018

computing environment, the computing resources (CPU,

memory, storage, etc.) required by the user can be easily and

quickly provided in the form of a virtual machine. Cloud

computing has spread very quickly due to the characteristics

described above. In addition, it is recognized as a means to

quickly allocate computing resources required for large-scale

NGS analysis and to perform storage and analysis in distributed

parallel form.

In this paper, we analyze and compare NGS analysis

technology based on cloud. In particular, we focus on cloud-

based distributed parallel NGS analysis techniques to speed up

large-scale NGS analysis. The composition of this paper is as

follows. Section 2 describes NGS in more detail. In Section 3,

we analyze cloud-based NGS analysis techniques, and in

Section 4, we compare those techniques. Finally conclude in

Section 5.

2. NEXT GENERATION SEQUENCING (NGS)

Next Generation Sequencing (NGS) was first

commercialized in 2006, bringing about a revolution in genome

research for less than a decade. NGS first divides a single

genome into many pieces and reads each piece at the same time.

Then, ICT is applied to combine the fragments to quickly

analyze vast amounts of genomic information [6].

The biggest difference between Sanger Sequencing and

NGS is as the following. Sanger Sequencing takes a long time

because it uses a very long base sequence for analysis. On the

other hand, NGS can greatly reduce the analysis time because it

can process the fragments belonging to different regions

simultaneously after dividing the nucleotide sequence into

numerous pieces.

The NGS analysis process proposed in GATK can be

simplified as follows. The core of this process is the generation

of raw sequencing reads, reads alignment, reads deduplication,

and the detection of variants in the reads (variant calling). In

the raw sequencing reads generation step, the genome data is

input to the computer from the genome analysis equipment.

The sequence alignment step aligns the input DNA reads to a

reference genome. In the deduplication step, redundant

sequence reads that result from sequencing two or more copies

of the exact same DNA fragment introduced during PCR

amplification are removed. The variant calling step detects the

mutation with deduplicated DNA reads.

The detected mutations are single nucleotide

polymorphism (SNP) or short Indels. Then, the SNP

information is compared with an existing database (dbSNP) to

judge whether the mutation has already been revealed or newly

discovered. Annotation also predicts whether the mutation will

cause changes to the amino acid and what effect it will have on

the protein structure. For extracted SNPs and Indels, further

work can be done to improve the quality of the information [9].

There are several software tools used for each step of the

NGS analysis as shown in Table 1. Analysts who create the

NGS analysis pipeline can choose the appropriate tools in

stages. Recommended best practices by GATK are BWA,

Picard and GATK [20]. proposes a pipeline consisting of BWA,

Picard, and GATK [21]. proposes a pipeline consisting of

GATK, BWA, MuTect and MutSig.

Table 1. Tools for each NGS steps

Steps Tools GATK best practices

alignment
BWA [10], GATK [11],

Bowtie [12]
BWA-MEM

mark

duplicates
Picard [13], Samblaster [14] Picard

variant

calling

GATK, MuTect [15],

MutSig [16], Freebayes [17],

ANNOVAR [18], VEP [19]

GATK

3. DISTRIBUTED AND PARALLEL NGS ANALYSIS

METHODS

In a cloud computing environment, the computing

resources required for a task to be processed by a user can be

allocated in a virtual machine form. That is, appropriate virtual

machines can be allocated and used as needed for one NGS

data analysis process. For example, in the cloud computing

environment, computing resources can be allocated according

to the load of tasks such as 8 virtual machines, 2 for

deduplication, 8 for mutation detection, etc. in order to quickly

sort the reference genome. There is an opportunity to accelerate.

However, the existing analysis tools in Table 1 are

designed and developed without consideration of the cloud

computing environment. There is a problem that the existing

tools must be completely redesigned in order to reduce the

execution time by using the computing resources provided by

the cloud computing environment in a parallel distributed

manner.

To solve this problem, several methods such as [24]-[29]

using Apache Hadoop MapReduce [22] or Apache Spark [23]

are proposed in the past several years. These methods build a

cluster consisting of many computer nodes and accelerate NGS

data analysis using a distributed parallel processing framework

such as MapReduce or Spark.

BigBWA [25] and SparkBWA [26] allow distributed

parallel processing of BWA, the sorting tool for the reference

genome, based on MapReduce and Spark, respectively. These

methods used an existing BWA approach without modification.

They take the existing BWA in Spark or MapReduce to

perform several processes at the same time with native code

invocation method like JNI. [27] proposed a method to perform

de-duplication by executing Samblaster in distributed parallel

manner by inputting in stream form without saving the output

from BigBWA.

[24], [28], [29] also take an approach similar to

SparkBWA and BigBWA, but run the entire NGS analysis

process. We will analyze them in more detail in the following

sections.

3.1 Cluster-Based Apache Spark Implementation of the

GATK DNA Analysis Pipeline [28]

36 Hyungil Kang : Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing

International Journal of Contents, Vol.14, No.1, Mar. 2018

Fig. 2. NGS analysis process of [28]

In this paper, authors presented a framework to parallelize

the steps of the GATK best practices using Apache Spark. The

framework segments an input data to achieve scalability. It

proposed a load balancing algorithm that split chromosomal

regions according to the number of reads to each chromosome

rather than the static length of the chromosomes. To reduce

costs for the split of chromosome regions, it processes the split

in memory.

The BWA-MEM of the GATK best practices is able to be

scalable on a multicore system using multi-threading. However,

for other tools in the GATK best practices it is difficult to run

in parallel. The framework is designed to provide a generic

method to ensure scalability to the various genomics analysis

pipelines by using the Apache Spark.

Fig. 2 shows the overall architecture and the analysis

process of the proposed framework in [28]. In this figure there

are two FASTQ (2 ends of a pair of sequences) files are

generated. The two FASTQ files are split into a number of

chunks and uploaded into HDFS. All nodes in a cluster are able

to access the chunks in HDFS. BWA-MEM processes in the

cluster nodes perform DNA alignment of the short reads

against a reference genome chunks in HDFS in parallel.

This step produces a SAM file which includes a list of

read alignments (SAM records). SAM records are read into

<key, value> pairs in the memory and then divides them into

sub-chromosome regions using the load balancing algorithm

described above to ensure a better distribution of the

subsequent tasks. The read <key, value> SAM records are

sorted according to the position field of records. Then mark

duplicates step and variant calling step are performed in

parallel on each sub-chromosomal region separately. Finally,

multiple VCF files are produced and they are merged into one

VCF file.

3.2 Halvade [24]

Halvade is a framework that enables parallel NGS analysis

on multi-core compute infrastructure as well as multi-node

cluster infrastructure. Halvade is designed based on the

observation that read alignment and variant calling is able to

run in parallel by read and chromosomal region. The alignment

of one read is independent of the alignment of another read so

the read alignment step can be processed in parallel. Variant

calling step, also, is parallel by chromosomal region. That is,

variant calling in one chromosomal region is independent of

variant calling in a different chromosomal region.

Halvade is based on Apache Hadoop MapReduce while

[28] is based on Apache Spark. The map phase of Halvade is

the read alignment step and the reduce phase is the variant

calling step. The output of the map phase (read alignment step)

is sorted in parallel according to the aligned position before

processed by the reduce phase (variant calling step). Halvade is

designed to achieve a good load balance, maximize data

locality and minimize disk I/O by avoiding file format

conversions.

Fig. 3. Overall Architecture of Halvade [24]

 Hyungil Kang : Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing 37

International Journal of Contents, Vol.14, No.1, Mar. 2018

Overview of the Halvade framework is shown in Fig. 3.

Like Fig. 3, there are two input FASTQ files (2 ends of a pair

of sequences). Two FASTQ files are segmented into a number

of interleaved chunks. Map tasks for read alignment step are

executed in parallel. Each map task process a single input

chunk to align the reads in the chunk to a reference genome

using BWA. The map tasks produce <key, value> pairs where

the key contains position field of a SAM record. The SAM

records are grouped into chromosomal regions. The reduce

phase for variant calling step process chromosomal regions in

parallel. The reduce phase includes data preparation and variant

detection. GATK is used in this step. Each reduce task outputs

the multiple VCF files, and the files are optionally merged into

a single VCF file.

3.3 SparkGA [29]

SparkGA is an upgrade version of [28]. Since [28]

performs its entire load balancing step in memory, it results in

out of memory errors for large input. SparkGA is proposed to

solve the memory problems. In addition, since the memory and

computational requirements for different steps vary, SparkGA

runs the pipeline in three different application programs such as

DNA mapping and load balancing, marking of duplicates and

variant calling. SparkGA allows users to tune memory and

cores of executors for all those application programs.

The work flow of SparkGA is shown in Fig. 4. There are

two FASTQ files generated as input. These two input FASTQ

files are divided into interleaved chunks and uploaded into

HDFS. Each chunk is then processed by a read alignment task

that performs read alignment using BWA-MEM. The output of

this step is a SAM file which consists of a list of read

alignments (SAM records). Since the length of each

chromosome is given, it is possible to perform an approximate

load balancing by reading the output of the SAM files produced

by each BWA mem task. In addition, SparkGA perform

dynamic load balancing to distribute reads evenly according to

actual reads available at runtime. Each created chromosomal

region based on actual reads achieves a better performance.

Subsequently, for each chromosomal region, the aligned

reads are sorted using the position fields of SAM records. Then,

the rest of the analysis steps are performed in parallel like [28].

Finally, multiple VCF files for each chromosomal region are

produced as output and they are merged into a single VCF file.

Fig. 4. Workflow of SparkGA

4. COMPARISON

We compare the three existing methods such as [28],

Halvade and SparkGA. Halvade is based on Apache Hadoop

MapReduce while others are based on Apache Spark. Using

Apache Spark has several advantages. First, the code written is

more simple as compared to Hadoop MapReduce. Instead of

using a map followed by a reduce step, Spark allows our code

to contain a few cascaded map calls [28]. Second, Apache

Spark tries to perform operations on reads in memory of the

nodes, so as to reduce the number of disk IOs. Since Apache

Spark has some advantages, it is expected that [28] and

SparkGA may outperform Halvade.

[28] has some memory problems while performing load

balancing step while SparkGA can process load balancing with

small memory. In [29] authors claim that even on a single node

with just 16 GB of RAM large data can be processed. Also, in

[28], the entire NGS analysis process corresponds to a single

Apache Spark application. However, SparkGA performs the

NGS analysis in three applications for the three steps such as

reads alignment and static load balancing, sorting and dynamic

load balancing, and mark duplicates and variant discovery.

Through this approach, each application can be executed with

different optimized Spark execution parameters

5. CONCLUSION

This paper discusses the basic concepts and analysis

process of NGS analysis and describes what software tools are

used at each stage of the analysis process. We also looked at

the use of cloud computing as a means of allocating the

computing resources needed for large-scale NGS data analysis.

Finally, we describe the methods of using the distributed

parallel characteristics of the cloud computing environment for

large-scale NGS data analysis. Most of these methods are

distributed and parallelized based on the distributed parallel

processing framework.

This approach seems to have the advantage of not

modifying core algorithms of widely used software tools.

However, there are limitations in using all of the advantages of

distributed parallel frameworks when performing existing code

as is. In particular, the input / output of each software tool

repeatedly occurs on the local hard disk, which limits the

performance improvement. In future research, it will be

necessary to study the improvement of performance by

38 Hyungil Kang : Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing

International Journal of Contents, Vol.14, No.1, Mar. 2018

controlling input / output without changing core algorithm of

existing analysis software.

REFERENCES

[1] M. Choi, “Development Trends of Medical Genomics

Using Next Generation Sequencing Techniques,”

Molecular Cell Biology Newsletter, Apr. 2014.

[2] https://www.genome.gov/sequencingcostsdata/

[3] M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud

Computing and the DNA Data Race,” Nature

Biotechnology, vol. 28, no. 7, 2010, pp. 691-693.  

[4] M. Baker, “Next-generation Sequencing: Adjusting to

Data Overload,” Nature Methods, vol. 7, no. 7, 2010,

pp. 495-499.

[5] B. Calabrese and M. Cannataro, “Bioinformatics and

Microarray Data Analysis on the Cloud,” Methods in

Molecular Biology, vol. 1375, 2016, pp. 25-39.  

[6] http://ngenebio.com/

[7] C. Lee, Bioinformatics Analysis of Next-Generation

Sequence Data, BRIC View Trend Report, 2016

[8] A. Geraldine, V. Auwera, M. O. Carneiro, C. Hartl, R.

Poplin, G. Angel, A. Levy‐Moonshine, T. Jordan, K.

Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella,

D. Altshuler, S. Gabriel, and M. A. DePristo, “From FastQ

Data to High Confidence Variant Calls: the Genome

Analysis Toolkit Best Practices Pipeline,” Current

Protocols in Bioinformatics, 2013, pp. 11-10.

[9] https://www.bioin.or.kr/board.do?cmd=view&bid=tech&n

um=216321

[10] BWA, https://github.com/lh3/bwa

[11] GATK, https://software.broadinstitute.org/gatk/

[12] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg,

“Ultrafast and Memory-efficient Alignment of Short DNA

Sequences to the Human Genome,” Genome biology, vol.

10, no. 3, 2009.

[13] http://broadinstitute.github.io/picard/

[14] https://github.com/GregoryFaust/samblaster

[15] https://github.com/broadinstitute/mutect

[16] https://hpc.nih.gov/apps/MutSig.html

[17] https://github.com/ekg/freebayes

[18] https://github.com/WGLab/doc-ANNOVAR/

[19] https://www.ensembl.org/vep

[20] https://gencore.bio.nyu.edu/variant-calling-pipeline/

[21] https://wikis.utexas.edu/display/bioiteam/DNAseq+Varian

t+Calling+Pipeline

[22] https://hadoop.apache.org/

[23] https://spark.apache.org/

[24] D. Decap, J. Reumers, C. Herzeel, P. Costanza, and J. Fostier,

“Halvade: Scalable Sequence Analysis with MapReduce,”

Bioinformatics, vol. 31, no. 15, 2015, pp. 2482-2488.

[25] https://github.com/citiususc/BigBWA

[26] https://github.com/citiususc/SparkBWA

[27] J. Lee, H. Lee, J. Moon, H. Kang, S. Song, and S. Yu,

“Parallel and Distributed PCR Duplication Marking

Algorithm Integrated with Genome Sequence Alignment

by Using Streaming Technology,” Proceedings of TBC

2017, 2017.

[28] H. Mushtaq and Z. Al-Ars, “Cluster-based Apache

Spark Implementation of the GATK DNA Analysis

Pipeline,” In Proceedings of IEEE International

Conference on Bioinformatics and Biomedicine

(BIBM), 2015, pp. 1471-1477.

[29] H. Mushtaq, F. Liu, C. Costa, G. Liu, P. Hofstee, and Z.

Al-Ars, “Sparkga: A Spark Framework for Cost Effective,

Fast and Accurate DNA Analysis at Scale,” In

Proceedings of the 8th ACM International Conference on

Bioinformatics, Computational Biology, and Health

Informatics, 2017, pp. 148-157.

Hyungil Kang

He received the BS, MS degrees in

Mokpo University in 1996 and 1998

respectively. He received PhD degree in

Computer and Communication

Department from Chungbuk National

University in 2002. He is an Associate

Professor of Department of

Semiconductor Electronics Engineering, Chungbuk Health &

Science University, Republic of Korea. His research interests

are database systems, XML database, bigdata.

Sangsoo Kim

He received the BS in Mokpo University

in 1995 and MS in Cheonbuk University

in 2006. He is a researcher of Course-

based Qualification Exam Team2,

Human Resources Development Service

of Korea, Republic of Korea. His

research interests are bioinformatics and

bigdata.

https://www.bioin.or.kr/board.do?cmd=view&
https://wikis.utexas.edu/display/bioiteam/

