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ABSTRACT 

 

With the rapid growth of genomic data, new requirements have emerged that are difficult to handle with big data storage and 

analysis techniques. Regardless of the size of an organization performing genomic data analysis, it is becoming increasingly difficult 

for an institution to build a computing environment for storing and analyzing genomic data. Recently, cloud computing has emerged 

as a computing environment that meets these new requirements.  In this paper, we analyze and compare existing distributed and 

parallel NGS (Next Generation Sequencing) analysis based on cloud computing environment for future research. 
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1. INTRODUCTION 

 

The DNA sequencing method developed by the British 

biochemist Frederick Sanger in 1977 has been widely used for 

about 40 years. Sanger sequencing is a technique for analyzing 

a single strand of DNA strands in a single tube. This method 

has a limited DNA sequencing throughput, which is very costly 

and time-consuming to analyze the genome [1]. 

Next Generation Sequencing (NGS) is a next-generation 

DNA sequencing method that solves the technical bottleneck of 

sanger sequencing. NGS was first commercialized in 2006 and 

has since revolutionized genome research. Fig. 1 shows the cost 

of genome analysis from 2001 to 2017. In this figure, the graph 

from 2001 to mid-2007 is the cost of genome analysis using 

sanger sequencing. The graphs since mid-2007 show the cost of 

genome analysis using NGS. As shown in the figure, NGS has 

greatly reduced the cost of genome analysis every year. 
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Fig. 1. Cost of DNA analysis 

 

NGS analysis techniques with high throughput have 

evolved rapidly and are changing the scope of genome research 

and development of new drugs [3], [4]. With the development 

of NGS technology, the cost of DNA sequencing has 

drastically decreased. As a result, NGS analysis has spread to 

various fields, and genome data has increased exponentially. 

With the rapid growth of genomic data, new requirements 

have emerged that are difficult to handle with big data storage 

and analysis techniques. Regardless of the size of an 

organization performing genomic data analysis, it is becoming 

increasingly difficult for an institution to build a computing 

environment for storing and analyzing genomic data. 

Recently, cloud computing has emerged as a computing 

environment that meets these new requirements [5]. In a cloud 
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computing environment, the computing resources (CPU, 

memory, storage, etc.) required by the user can be easily and 

quickly provided in the form of a virtual machine. Cloud 

computing has spread very quickly due to the characteristics 

described above. In addition, it is recognized as a means to 

quickly allocate computing resources required for large-scale 

NGS analysis and to perform storage and analysis in distributed 

parallel form. 

In this paper, we analyze and compare NGS analysis 

technology based on cloud. In particular, we focus on cloud-

based distributed parallel NGS analysis techniques to speed up 

large-scale NGS analysis. The composition of this paper is as 

follows. Section 2 describes NGS in more detail. In Section 3, 

we analyze cloud-based NGS analysis techniques, and in 

Section 4, we compare those techniques. Finally conclude in 

Section 5. 

 

 

2. NEXT GENERATION SEQUENCING (NGS) 

 

Next Generation Sequencing (NGS) was first 

commercialized in 2006, bringing about a revolution in genome 

research for less than a decade. NGS first divides a single 

genome into many pieces and reads each piece at the same time. 

Then, ICT is applied to combine the fragments to quickly 

analyze vast amounts of genomic information [6]. 

The biggest difference between Sanger Sequencing and 

NGS is as the following. Sanger Sequencing takes a long time 

because it uses a very long base sequence for analysis. On the 

other hand, NGS can greatly reduce the analysis time because it 

can process the fragments belonging to different regions 

simultaneously after dividing the nucleotide sequence into 

numerous pieces. 

The NGS analysis process proposed in GATK can be 

simplified as follows. The core of this process is the generation 

of raw sequencing reads, reads alignment, reads deduplication, 

and the detection of variants in the reads (variant calling). In 

the raw sequencing reads generation step, the genome data is 

input to the computer from the genome analysis equipment. 

The sequence alignment step aligns the input DNA reads to a 

reference genome. In the deduplication step, redundant 

sequence reads that result from sequencing two or more copies 

of the exact same DNA fragment introduced during PCR 

amplification are removed. The variant calling step detects the 

mutation with deduplicated DNA reads.  

The detected mutations are single nucleotide 

polymorphism (SNP) or short Indels. Then, the SNP 

information is compared with an existing database (dbSNP) to 

judge whether the mutation has already been revealed or newly 

discovered. Annotation also predicts whether the mutation will 

cause changes to the amino acid and what effect it will have on 

the protein structure. For extracted SNPs and Indels, further 

work can be done to improve the quality of the information [9]. 

There are several software tools used for each step of the 

NGS analysis as shown in Table 1. Analysts who create the 

NGS analysis pipeline can choose the appropriate tools in 

stages. Recommended best practices by GATK are BWA, 

Picard and GATK [20]. proposes a pipeline consisting of BWA, 

Picard, and GATK [21]. proposes a pipeline consisting of 

GATK, BWA, MuTect and MutSig. 

 

Table 1. Tools for each NGS steps 

Steps Tools GATK best practices 

alignment 
BWA [10], GATK [11], 

Bowtie [12] 
BWA-MEM 

mark 

duplicates 
Picard [13], Samblaster [14] Picard 

variant 

calling 

GATK, MuTect [15],  

MutSig [16], Freebayes [17], 

ANNOVAR [18], VEP [19] 

GATK 

 

 

3. DISTRIBUTED AND PARALLEL NGS ANALYSIS 

METHODS 

 

In a cloud computing environment, the computing 

resources required for a task to be processed by a user can be 

allocated in a virtual machine form. That is, appropriate virtual 

machines can be allocated and used as needed for one NGS 

data analysis process. For example, in the cloud computing 

environment, computing resources can be allocated according 

to the load of tasks such as 8 virtual machines, 2 for 

deduplication, 8 for mutation detection, etc. in order to quickly 

sort the reference genome. There is an opportunity to accelerate. 

However, the existing analysis tools in Table 1 are 

designed and developed without consideration of the cloud 

computing environment. There is a problem that the existing 

tools must be completely redesigned in order to reduce the 

execution time by using the computing resources provided by 

the cloud computing environment in a parallel distributed 

manner. 

To solve this problem, several methods such as [24]-[29] 

using Apache Hadoop MapReduce [22] or Apache Spark [23] 

are proposed in the past several years. These methods build a 

cluster consisting of many computer nodes and accelerate NGS 

data analysis using a distributed parallel processing framework 

such as MapReduce or Spark. 

BigBWA [25] and SparkBWA [26] allow distributed 

parallel processing of BWA, the sorting tool for the reference 

genome, based on MapReduce and Spark, respectively. These 

methods used an existing BWA approach without modification. 

They take the existing BWA in Spark or MapReduce to 

perform several processes at the same time with native code 

invocation method like JNI. [27] proposed a method to perform 

de-duplication by executing Samblaster in distributed parallel 

manner by inputting in stream form without saving the output 

from BigBWA. 

[24], [28], [29] also take an approach similar to 

SparkBWA and BigBWA, but run the entire NGS analysis 

process. We will analyze them in more detail in the following 

sections.  

 

3.1 Cluster-Based Apache Spark Implementation of the 

GATK DNA Analysis Pipeline [28] 
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Fig. 2. NGS analysis process of [28] 

 

In this paper, authors presented a framework to parallelize 

the steps of the GATK best practices using Apache Spark. The 

framework segments an input data to achieve scalability. It 

proposed a load balancing algorithm that split chromosomal 

regions according to the number of reads to each chromosome 

rather than the static length of the chromosomes. To reduce 

costs for the split of chromosome regions, it processes the split 

in memory. 

The BWA-MEM of the GATK best practices is able to be 

scalable on a multicore system using multi-threading. However, 

for other tools in the GATK best practices it is difficult to run 

in parallel. The framework is designed to provide a generic 

method to ensure scalability to the various genomics analysis 

pipelines by using the Apache Spark.  

Fig. 2 shows the overall architecture and the analysis 

process of the proposed framework in [28]. In this figure there 

are two FASTQ (2 ends of a pair of sequences) files are 

generated. The two FASTQ files are split into a number of 

chunks and uploaded into HDFS. All nodes in a cluster are able 

to access the chunks in HDFS. BWA-MEM processes in the 

cluster nodes perform DNA alignment of the short reads 

against a reference genome chunks in HDFS in parallel.  

This step produces a SAM file which includes a list of 

read alignments (SAM records). SAM records are read into 

<key, value> pairs in the memory and then divides them into 

sub-chromosome regions using the load balancing algorithm 

described above to ensure a better distribution of the 

subsequent tasks. The read <key, value> SAM records are 

sorted according to the position field of records. Then mark 

duplicates step and variant calling step are performed in 

parallel on each sub-chromosomal region separately. Finally, 

multiple VCF files are produced and they are merged into one 

VCF file. 

 

3.2 Halvade [24] 

Halvade is a framework that enables parallel NGS analysis 

on multi-core compute infrastructure as well as multi-node 

cluster infrastructure. Halvade is designed based on the 

observation that read alignment and variant calling is able to 

run in parallel by read and chromosomal region. The alignment 

of one read is independent of the alignment of another read so 

the read alignment step can be processed in parallel. Variant 

calling step, also, is parallel by chromosomal region. That is, 

variant calling in one chromosomal region is independent of 

variant calling in a different chromosomal region.  

Halvade is based on Apache Hadoop MapReduce while 

[28] is based on Apache Spark. The map phase of Halvade is 

the read alignment step and the reduce phase is the variant 

calling step. The output of the map phase (read alignment step) 

is sorted in parallel according to the aligned position before 

processed by the reduce phase (variant calling step). Halvade is 

designed to achieve a good load balance, maximize data 

locality and minimize disk I/O by avoiding file format 

conversions.  

 

Fig. 3. Overall Architecture of Halvade [24] 
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Overview of the Halvade framework is shown in Fig. 3. 

Like Fig. 3, there are two input FASTQ files (2 ends of a pair 

of sequences). Two FASTQ files are segmented into a number 

of interleaved chunks. Map tasks for read alignment step are 

executed in parallel. Each map task process a single input 

chunk to align the reads in the chunk to a reference genome 

using BWA. The map tasks produce <key, value> pairs where 

the key contains position field of a SAM record. The SAM 

records are grouped into chromosomal regions. The reduce 

phase for variant calling step process chromosomal regions in 

parallel. The reduce phase includes data preparation and variant 

detection. GATK is used in this step. Each reduce task outputs 

the multiple VCF files, and the files are optionally merged into 

a single VCF file.  

 

3.3 SparkGA [29] 

SparkGA is an upgrade version of [28]. Since [28] 

performs its entire load balancing step in memory, it results in 

out of memory errors for large input. SparkGA is proposed to 

solve the memory problems. In addition, since the memory and 

computational requirements for different steps vary, SparkGA 

runs the pipeline in three different application programs such as 

DNA mapping and load balancing, marking of duplicates and 

variant calling. SparkGA allows users to tune memory and 

cores of executors for all those application programs.  

The work flow of SparkGA is shown in Fig. 4. There are 

two FASTQ files generated as input. These two input FASTQ 

files are divided into interleaved chunks and uploaded into 

HDFS. Each chunk is then processed by a read alignment task 

that performs read alignment using BWA-MEM. The output of 

this step is a SAM file which consists of a list of read 

alignments (SAM records). Since the length of each 

chromosome is given, it is possible to perform an approximate 

load balancing by reading the output of the SAM files produced 

by each BWA mem task. In addition, SparkGA perform 

dynamic load balancing to distribute reads evenly according to 

actual reads available at runtime. Each created chromosomal 

region based on actual reads achieves a better performance.  

Subsequently, for each chromosomal region, the aligned 

reads are sorted using the position fields of SAM records. Then, 

the rest of the analysis steps are performed in parallel like [28]. 

Finally, multiple VCF files for each chromosomal region are 

produced as output and they are merged into a single VCF file.  

 

Fig. 4. Workflow of SparkGA 

 

 

 

4. COMPARISON  

 

We compare the three existing methods such as [28], 

Halvade and SparkGA. Halvade is based on Apache Hadoop 

MapReduce while others are based on Apache Spark. Using 

Apache Spark has several advantages. First, the code written is 

more simple as compared to Hadoop MapReduce. Instead of 

using a map followed by a reduce step, Spark allows our code 

to contain a few cascaded map calls [28]. Second, Apache 

Spark tries to perform operations on reads in memory of the 

nodes, so as to reduce the number of disk IOs. Since Apache 

Spark has some advantages, it is expected that [28] and 

SparkGA may outperform Halvade.  

[28] has some memory problems while performing load 

balancing step while SparkGA can process load balancing with 

small memory.  In [29] authors claim that even on a single node 

with just 16 GB of RAM large data can be processed. Also, in 

[28], the entire NGS analysis process corresponds to a single 

Apache Spark application. However, SparkGA performs the 

NGS analysis in three applications for the three steps such as 

reads alignment and static load balancing, sorting and dynamic 

load balancing, and mark duplicates and variant discovery. 

Through this approach, each application can be executed with 

different optimized Spark execution parameters  

 

 

5. CONCLUSION 

 

This paper discusses the basic concepts and analysis 

process of NGS analysis and describes what software tools are 

used at each stage of the analysis process. We also looked at 

the use of cloud computing as a means of allocating the 

computing resources needed for large-scale NGS data analysis. 

Finally, we describe the methods of using the distributed 

parallel characteristics of the cloud computing environment for 

large-scale NGS data analysis. Most of these methods are 

distributed and parallelized based on the distributed parallel 

processing framework. 

This approach seems to have the advantage of not 

modifying core algorithms of widely used software tools. 

However, there are limitations in using all of the advantages of 

distributed parallel frameworks when performing existing code 

as is. In particular, the input / output of each software tool 

repeatedly occurs on the local hard disk, which limits the 

performance improvement. In future research, it will be 

necessary to study the improvement of performance by 
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controlling input / output without changing core algorithm of 

existing analysis software. 
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