DOI QR코드

DOI QR Code

Changes and Improvements of the Standardized Eddy Covariance Data Processing in KoFlux

표준화된 KoFlux 에디 공분산 자료 처리 방법의 변화와 개선

  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Kim, Joon (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University) ;
  • Lee, Seung-Hoon (National Center for AgroMeteorology) ;
  • Kim, Jongho (National Center for AgroMeteorology) ;
  • Chun, Jung-Hwa (Division of Forest Conservation, Korea Forest Research Institute) ;
  • Cho, Sungsik (National Center for AgroMeteorology)
  • 강민석 (국가농림기상센터) ;
  • 김준 (서울대학교 협동과정 농림기상학전공) ;
  • 이승훈 (국가농림기상센터) ;
  • 김종호 (국가농림기상센터) ;
  • 천정화 (국립산림과학원 산림보전부) ;
  • 조성식 (국가농림기상센터)
  • Received : 2018.03.06
  • Accepted : 2018.03.29
  • Published : 2018.03.30

Abstract

The standardized eddy covariance flux data processing in KoFlux has been updated, and its database has been amended accordingly. KoFlux data users have not been informed properly regarding these changes and the likely impacts on their analyses. In this paper, we have documented how the current structure of data processing in KoFlux has been established through the changes and improvements to ensure transparency, reliability and usability of the KoFlux database. Due to increasing diversity and complexity of flux site instrumentation and organization, we have re-implemented the previously ignored or simplified procedures in data processing (e.g., frequency response correction, stationarity test), and added new methods for $CH_4$ flux gap-filling and $CO_2$ flux correction and partitioning. To evaluate the effects of the changes, we processed the data measured at a flat and homogeneous paddy field (i.e., HPK) and a deciduous forest in complex and heterogeneous topography (i.e., GDK), and quantified the differences. Based on the results from our overall assessment, it is confirmed that (1) the frequency response correction (HPK: 11~18% of biases for annually integrated values, GDK: 6~10%) and the stationarity test (HPK: 4~19% of biases for annually integrated values, GDK: 9~23%) are important for quality control and (2) the minimization of the missing data and the choice of the appropriate driver (rather than the choice of the gap-filling method) are important to reduce the uncertainty in gap-filled fluxes. These results suggest the future directions for the data processing technology development to ensure the continuity of the long-term KoFlux database.

KoFlux의 표준화된 에디 공분산 플럭스 자료 처리과정이 갱신되는 과정에서 그 처리 방법에 따른 결과도 조금씩 달라져 왔다. 대부분의 자료 사용자들은 자료 처리 결과의 차이와 이러한 차이가 자신들의 분석결과에 미칠 수 있는 영향에 대해 명확히 인지하지 못하고 자료를 사용하고 있는 실정이다. 본 총설에서는 KoFlux 데이터베이스를 사용하는 연구자들에게 자료처리 과정을 투명하게 정리하여 자료에 대한 신뢰성과 활용성을 확보하기 위해, 과거의 자료 처리 방법이 어떻게 변화되고 개선되었는지를 평탄하고 균질한 해남 논 관측지(HPK)와 복잡하고 비균질한 광릉 활엽수림 관측지(GDK) 자료를 처리하고 그 차이를 확인하여 문서화하였다. 관측 대상지와 관측 장비의 다양화로 인해, 기존에 무시되거나 간소화 되었던 자료 처리 과정(예, 주파수 반응 보정, 정상성 검정 등)을 다시 적용하였고, 메탄 플럭스 결측 메우기와 이산화탄소 플럭스 보정 및 배분 방법을 새롭게 개선하였다. 본 연구결과로부터 에디 공분산 플럭스 관측 자료의 품질에 주파수 반응 보정(HPK: 연적산값의 11~18%의 편향 발생, GDK: 6~10%)과 정상성 점검(HPK: 연적산값의 4~19%의 편향 발생, GDK: 9~23%)이 매우 중요하고, 결측 메우기 및 배분 과정에 있어서 우선적으로 결측을 최소화하는 것이 최선이며, 대상 플럭스의 변동을 설명할 수 있는 적절한 조절 인자의 선택이 처리방법의 선택보다 중요함을 확인 하였다. 장기 KoFlux 관측 자료의 정확성, 투명성 및 연속성 확보를 위해 위의 결과를 반영하는 자료 처리 기술 개발과 문서화를 지속적으로 추진해 나갈 것이다.

Keywords

References

  1. Alberto, M. C. R., R. Wassmann, R. J. Buresh, J. R. Quilty, T. Q. Correa Jr, J. M. Sandro, and C. A. R. Centeno, 2014: Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research 160, 12-21. https://doi.org/10.1016/j.fcr.2014.02.008
  2. Baldocchi, D., 2014: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method. Global Change Biology 20, 3600-3609. https://doi.org/10.1111/gcb.12649
  3. Chu, H., D. D. Baldocchi, R. John, S. Wolf, and M. Reichstein, 2017: Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences 122, 289-307. https://doi.org/10.1002/2016JG003576
  4. Dragoni, D., H. Schmid, C. Grimmond, and H. Loescher, 2007: Uncertainty of annual net ecosystem productivity estimated using eddy covariance flux measurements. Journal of Geophysical Research: Atmospheres 112, D17102, doi:10.1029/2006JD008149.
  5. Finkelstein, P. L., and P. F. Sims, 2001: Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres 106, 3503-3509. https://doi.org/10.1029/2000JD900731
  6. Fratini, G., A. Ibrom, N. Arriga, G. Burba, and D. Papale, 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology 165, 53-63. https://doi.org/10.1016/j.agrformet.2012.05.018
  7. Hatala, J. A., M. Detto, and D. D. Baldocchi, 2012: Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophysical Research Letters 39, L06409, DOI:10.1029/2012GL051303.
  8. Hong, J., and J. Kim, 2002: On processing raw data from micrometeorological field experiments. Korean Journal of Agricultural and Forest Meteorology 4, 119-126. (in Korean with English abstract)
  9. Hong, J.-K., H.-J. Kwon, J.-H. Lim, Y.-H. Byun, J.-H. Lee, and J. Kim, 2009: Standardization of KoFlux eddy-covariance data processing. Korean Journal of Agricultural and Forest Meteorology 11, 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  10. Horst, T., and D. Lenschow, 2009: Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary-Layer Meteorology 130, 275-300. https://doi.org/10.1007/s10546-008-9348-0
  11. Ichii, K., M. Ueyama, M. Kondo, N. Saigusa, J. Kim, M. Alberto, J. Ardo, E. S. Euskirchen, M. Kang, and T. Hirano, 2017: New data-driven estimation of terrestrial $CO_2$ fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research: Biogeosciences 122, 767-795. https://doi.org/10.1002/2016JG003640
  12. Kang, M., J. Kim, H.-S. Kim, B. M. Thakuri, and J.-H. Chun, 2014: On the Nighttime Correction of $CO_2$ Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain. Korean Journal of Agricultural and Forest Meteorology 16, 233-245. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.3.233
  13. Kang, M., B. Malla-Thakuri, J. Kim, J. Chun, and C. Cho, 2016: A modification of the moving point test method for nighttime eddy flux filtering on hilly and complex terrain, Abstract B41B-0404 presented at 2016 Fall Meeting, AGU, San Francisco, CA, USA.
  14. Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim, 2017: Identifying $CO_2$ advection on a hill slope using information flow. Agricultural and Forest Meteorology 232, 265-278.
  15. Kang, M., S. Park, H. Kwon, H. T. Choi, Y. J. Choi, and J. Kim, 2009: Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. Asia-Pacific Journal of Atmospheric Sciences 45, 175-191.
  16. Kang, N., J. Yun, M. Talucder, M. Moon, M. Kang, K.-M. Shim, and J. Kim, 2015: Corrections on CH4 fluxes measured in a rice paddy by Eddy covariance method with an open-path wavelength modulation spectroscopy. Korean Journal of Agricultural and Forest Meteorology 17, 15-24. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.1.15
  17. Kim, J., S.B. Verma, D.P. Billesbach, R.J. Clement, 1998: Diel variation in methane emission from a midlatitude prairie wetland: significance of convective through flow in Phragmites australis. Journal of Geophysical Research: Atmospheres 103, 28029-28039. https://doi.org/10.1029/98JD02441
  18. Kim, J., S.B. Verma, D.P. Billesbach, 1999: Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5, 433-440. https://doi.org/10.1046/j.1365-2486.1999.00237.x
  19. Kim, J., T. Hirano, G. Yu, S. Li, and K. Tamai, 2013: Lessons learned from CarboEastAsia: carbon and water cycles in East Asian terrestrial ecosystems. Journal of Forest Research 18, 1-3. https://doi.org/10.1007/s10310-013-0389-y
  20. Kwon, H.-J., S.-B. Park, M.-S. Kang, J.-I. Yoo, R. Yuan, and J. Kim, 2007: Quality control and assurance of eddy covariance data at the two KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 9, 260-267. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.4.260
  21. LI-COR Inc., 2013: LI-7700 Open Path $CH_4$ Analyzer Instruction Manual. LI-COR, 4647 Superior Street, Inc. Lincoln, NE, USA.
  22. Lee, S.-H., M. Kang, N. Kang, and J. Kim, 2018: Haenam Paddy-field KoFlux (HPK) site with dry direct-seeding: Introduction. Korean Journal of Agricultural and Forest Meteorology in this issue. (in Korean with English abstract)
  23. Lim, H.-J., Y.-H. Lee, C. Cho, K. R. Kim, and B.-J. Kim, 2016: Estimation of the random error of eddy covariance data from two towers during daytime. ATMOSPHERE-KOREA 26, 483-492. (in Korean with English abstract) https://doi.org/10.14191/Atmos.2016.26.3.483
  24. Mauder, M. and T. Foken, 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15, 597-609. https://doi.org/10.1127/0941-2948/2006/0167
  25. McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology 43, 231-245. https://doi.org/10.1007/BF00128405
  26. Meijide, A., G. Manca, I. Goded, V. Magliulo, P. Di Tommasi, G. Seufert, and A. Cescatti, 2011: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences 8, 3809. https://doi.org/10.5194/bg-8-3809-2011
  27. Moncrieff, J. B., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending and filtering of eddy covariance time series. Handbook of micrometeorology: a guide for surface flux measurements eds. Lee, X., W. J. Massman and B. E. Law. Dordrecht: Kluwer Academic, 7-31.
  28. Papale, D., 2012: Data gap filling. Eddy Covariance, Springer Netherlands, 159-172.
  29. Press, W. H., S. A. Teukolsky, W. T. Vetterrling, and B. P. Flannery, 2002: Numerical recipes in C-The art of scientific computing, Cambridge Univ. Press, NY, USA.
  30. Reichstein, M., M. Bahn, M. D. Mahecha, J. Kattge, and D. D. Baldocchi, 2014: Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences 111, 13697-13702. https://doi.org/10.1073/pnas.1216065111
  31. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
  32. Richardson, A. D., and D. Y. Hollinger, 2007: A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the $CO_2$ flux record. Agricultural and Forest Meteorology 147, 199-208. https://doi.org/10.1016/j.agrformet.2007.06.004
  33. Richardson, A. D., D. Y. Hollinger, G. G. Burba, K. J. Davis, L. B. Flanagan, G. G. Katul, J. W. Munger, D. M. Ricciuto, P. C. Stoy, and A. E. Suyker, 2006: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology 136, 1-18. https://doi.org/10.1016/j.agrformet.2006.01.007
  34. Saigusa, N., S.-G. Li, H. Kwon, K. Takagi, L.-M. Zhang, R. Ide, M. Ueyama, J. Asanuma, Y.-J. Choi, and J. H. Chun, 2013: Dataset of CarboEastAsia and uncertainties in the $CO_2$ budget evaluation caused by different data processing. Journal of Forest Research 18, 41-48. https://doi.org/10.1007/s10310-012-0378-6
  35. Sturtevant, C., B. L. Ruddell, S. H. Knox, J. Verfaillie, J. H. Matthes, P. Y. Oikawa, and D. Baldocchi, 2015: Identifying scale-emergent, non-linear, asynchronous processes of wetland methane exchange. Journal of Geophysical Research: Biogeosciences 120, doi:10.1002/2015JG003054.
  36. Takagi, K., R. Hirata, X. Wen, H. Kwon, N. Saigusa, K. Ono, and A. Miyata, 2008: Inter-comparison of eddy flux calculation and QC/QA procedures of three flux networks (ChinaFLUX, JapanFlux and KoFlux) under AsiaFlux. AsiaFlux Newsletter 26, 8-11.
  37. Ueyama, M., R. Hirata, M. Mano, K. Hamotani, Y. Harazono, T. Hirano, A. Miyata, K. Takagi, and Y. Takahashi, 2012: Influences of various calculation options on heat, water and carbon fluxes determined by open-and closed-path eddy covariance methods. Tellus B: Chemical and Physical Meteorology 64, 19048. https://doi.org/10.3402/tellusb.v64i0.19048
  38. van Dijk, A., A. F. Moene, and H. A. R. de Bruin, 2004: The principles of surface flux physics: Theory, practice and description of the EC Pack library. Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands, 99 pp.
  39. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106, 85-100. https://doi.org/10.1002/qj.49710644707
  40. Wesely, M., G. Thurtell, and C. Tanner, 1970: Eddy correlation measurements of sensible heat flux near the earth's surface. Journal of Applied Meteorology 9, 45-50. https://doi.org/10.1175/1520-0450(1970)009<0045:ECMOSH>2.0.CO;2
  41. Wilczak, J., S. Oncley, and S. Stage, 2001: Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology 99, 127-150. https://doi.org/10.1023/A:1018966204465
  42. Yuan, R., M.-S. Kang, S.-B. Park, J.-K. Hong, D.-H. Lee, and J. Kim, 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment. Korean Journal of Agricultural and Forest Meteorology 9, 100-108. https://doi.org/10.5532/KJAFM.2007.9.2.100
  43. Yun, J., S. Kim, M. Kang, C.-H. Cho, J.-H. Chun, and J. Kim, 2014: Process networks of ecohydrological systems in a temperate deciduous forest: A complex systems perspective. Korean Journal of Agricultural Forest Meteorology 17, 15-24. (in Korean with English abstract)