DOI QR코드

DOI QR Code

Mycobacterium tuberculosis H37Rv로부터 유래된 철-황 함유 효소인 L-세린 탈수화효소의 동력학적 특성

Kinetic Characterization of an Iron-sulfur Containing Enzyme, L-serine Dehydratase from Mycobacterium tuberculosis H37Rv

  • 한유정 (부산가톨릭대학교 보건과학대학 임상병리학과) ;
  • 이기석 (부산가톨릭대학교 보건과학대학 임상병리학과)
  • Han, Yu Jeong (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Lee, Ki Seog (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • 투고 : 2017.10.23
  • 심사 : 2018.01.03
  • 발행 : 2018.03.30

초록

L-세린 탈수화효소(LSD)는 L-serine을 피루브산과 암모니아로 전환하는 반응을 촉매하는 iron-sulfur 함유 효소이다. 세균성 아미노산 탈수화 효소 중에서, L-serine에 대한 이들 특정 효소만이 촉매 부위에서 iron-sulfur cluster를 이용하는 것으로 보고되고 있다. 또한, 세균성 LSD는 구조적 특성과 도메인의 배열에 따라 네 가지 유형으로 분류된다. 현재까지, 이 효소들은 소수의 균주로부터 얻어진 LSD 효소에 대해서만 연구되었지만, 다양한 세균성 LSD의 촉매 메커니즘을 이해하기 위해서는 더 많은 자세한 조사가 요구된다. 본 연구에서, Mycobacterium tuberculosis H37Rv로부터 유래된 유형 II LSD (MtLSD) 단백질을 효소 동력학적 방법을 이용하여 생화학적 및 촉매적 특성을 규명하기 위해 발현 및 정제되었다. MtLSD에 대한 L-serine의 포화 곡선은 알로스테릭 협동성(allosteric cooperativity)을 나타내는 전형적인 S자형(sigmoid)의 특성을 보였다. 이때의 $K_m$$k_{cat}$ 값은 각각 $59.35{\pm}1.23mM$$18.12{\pm}0.20s^{-1}$로 계산되었다. 또한, 고정된 L-serine 농도 하에서 D-serine의 농도 대비 초속도에 대한 그래프는 비선형 쌍곡선 감쇠 형태를 보였고, $k_{cat}$ 값의 변화 없이 $30.46{\pm}5.93mM$의 겉보기 $K_i$ 값으로 D-serine에 대한 경쟁적 억제(competitive inhibition)를 나타내었다. 이들 연구는 MtLSD의 촉매 특성 및 기질 특이성에 관한 통찰력 있는 생화학적 정보를 제공한다.

L-Serine dehydratase (LSD) is an iron-sulfur containing enzyme that catalyzes the conversion of L-serine to pyruvate and ammonia. Among the bacterial amino acid dehydratases, it appears that only the L-serine specific enzymes utilize an iron-sulfur cluster at their catalytic site. Moreover, bacterial LSDs are classified into four types based on structural characteristics and domain arrangement. To date, only the LSD enzymes from a few bacterial strains have been studied, but more detailed investigations are required to understand the catalytic mechanism of various bacterial LSDs. In this study, LSD type II from Mycobacterium tuberculosis (MtLSD) H37Rv was expressed and purified to elucidate the biochemical and catalytic properties using the enzyme kinetic method. The L-serine saturation curve of MtLSD exhibited a typically sigmoid character, indicating an allosteric cooperativity. The values of $K_m$ and $k_{cat}$ were estimated to be $59.35{\pm}1.23mM$ and $18.12{\pm}0.20s^{-1}$, respectively. Moreover, the plot of initial velocity versus D-serine concentration at fixed L-serine concentrations showed a non-linear hyperbola decay shape and exhibited a competitive inhibition for D-serine with an apparent $K_i$ value of $30.46{\pm}5.93mM$ and with no change in the $k_{cat}$ value. These results provide insightful biochemical information regarding the catalytic properties and the substrate specificity of MtLSD.

키워드

참고문헌

  1. Alfoldi, L., Rasko, I. and Kerekes, E. 1968. L-serine deaminase of Escherichia coli. J. Bacteriol. 96, 1512-1518.
  2. Bae-Lee, M. S. and Carman, G. M. 1984. Phosphatidylserine synthesis in Saccharomyces cerevisiae. Purification and characterization of membrane-associated phosphatidylserine synthase. J. Biol Chem. 259, 10857-10862.
  3. Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S. and Blanot, D. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 168-207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
  4. Blakley, R. L. 1969. The Biochemistry of Folic Acid and Related Pteridines. North-Holland Publishing Company, Amsterdam.
  5. Burton, R. L., Chen, S., Xu, X. L. and Grant, G. A. 2009. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry 48, 4808-4815. https://doi.org/10.1021/bi900172q
  6. Carter, J. E. and Sagers, R. D. 1972. Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici. J. Bacteriol. 109, 757-763.
  7. Chen, S., Xu, X. L. and Grant, G. A. 2012. Allosteric activation and contrasting properties of L-serine dehydratase types 1 and 2. Biochemistry 51, 5320-5328. https://doi.org/10.1021/bi300523p
  8. Cherest, H. and Surdin-Kerjan, Y. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130, 51-58.
  9. Cherest, H., Thomas, D. and Surdin-Kerjan, Y. 1993. Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J. Bacteriol. 175, 5366-5374. https://doi.org/10.1128/jb.175.17.5366-5374.1993
  10. Cicchillo, R. M., Baker, M. A., Schnitzer, E. J., Newman, E. B., Krebs, C. and Booker, S. J. 2004. Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis. J. Biol. Chem. 279, 32418-32425. https://doi.org/10.1074/jbc.M404381200
  11. Dey, S., Grant, G. A. and Sacchettini, J. C. 2005. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280, 14892-14899. https://doi.org/10.1074/jbc.M414489200
  12. Flint, D. H. and Allen, R. M. 1996. Iron-sulfur proteins with non-redox functions. Chem. Rev. 96, 2315-2334. https://doi.org/10.1021/cr950041r
  13. Friedemann, T. E. and Haugen, G. E. 1943. Pyruvic acid II. The determination of keto acids in blood and urine. J. Biol. Chem. 147, 415-442.
  14. Grabowski, R. and Buckel, W. 1991. Purification and properties of an iron-sulfur-containing and pyridoxal-phosphate independent L-serinedehydratase from Peptostreptococcus asaccharolyticus. Eur. J. Biochem. 199, 89-94. https://doi.org/10.1111/j.1432-1033.1991.tb16095.x
  15. Grabowski, R., Hofmeister, A. E. and Buckel, W. 1993. Bacterial L-serine dehydratases: A new family of enzymes containing iron-sulfur clusters. Trends Biochem. Sci. 18, 297-300. https://doi.org/10.1016/0968-0004(93)90040-T
  16. Hama, H., Katahera, T., Tsuda, M. and Tsuchiya, T. 1991. Inhibition of homoserine dehydrogenase I by L-serine in Escherichia coli. J. Biochem. 109, 604-608. https://doi.org/10.1093/oxfordjournals.jbchem.a123427
  17. Hofmeister, A. E., Albracht, S. P. and Buckel, W. 1994. Iron-sulfur cluster-containing L-serine dehydratase from Peptostreptococcus asaccharolyticus: correlation of the cluster type with enzymatic activity. FEBS Lett. 351, 416-418. https://doi.org/10.1016/0014-5793(94)00901-5
  18. Kanfer, J. and Kennedy, E. P. 1964. Metabolism and function of bacterial lipids. II. biosynthesis of phospholipids in Escherichia coli. J. Biol. Chem. 239, 1720-1726.
  19. Ramos, F. and Wiame, J. M. 1982. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae. Eur. J. Biochem. 123, 571-576.
  20. Thoden, J. B., Holden, H. M. and Grant, G. A. 2014. Structure of L-serine dehydratase from Legionella pneumophila: Novel use of the Cterminal cysteine as an intrinsic competitive inhibitor. Biochemistry 53, 7615-7624. https://doi.org/10.1021/bi501253w
  21. Xu, X. L. and Grant, G. A. 2013. Identification and characterization of two new types of bacterial L-serine dehydratases and assessment of the function of the ACT domain. Arch. Biochem. Biophys. 540, 62-69. https://doi.org/10.1016/j.abb.2013.10.009
  22. Zhang, X. and Newman, E. 2008. Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol. Microbiol. 69, 870-881.
  23. Zhang, X., El-Hajj, Z. W. and Newman, E. 2010. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. J. Bacteriol. 192, 5515-5525. https://doi.org/10.1128/JB.00748-10